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CHAPTER 7

RELATIVITY: THE SPECIAL THEORY

In the preceding chapters we Haue_we have talked of space-as
being a set b¢'pnin¥s;_fhi5‘i§ gnaﬁ ehuugh for the pure.mathemat—
ician, but for geometr» to be applicable to the real world, the:
physicist must find objects in nature that correspend to these
points. A moments reflection suggest that these are esvents,

We have in mind such idealized happenings as the collision of two
particles of negligible size at a certain position in space and at
a certain %time. Real happenings such as the collision of two stars
or twn-ﬂuclei are much more complicated than this, of course, but
we assume that these more complicated happenings can alwavs be
analysed into a set of these idealized events. Each event would.
require for its specification four numbers, the time at which the
event occured and the three coordinates of the position at which
't occured. This presupposes that we have available apparatus for
measuring the time at which the event occured and its position
retative to some chosen reference frame. We shall specify an event
by the 4-tuple of numbers x = (t, x!, HE, w3y = Ct, %)

where t is the time of occurence and % is the position at which

it took place.

We arrive at the notion of the universe as a 4-dimensional
manifold of events, hereafter called space-time. Even at this
stage some philosophical objections come to mind. Can our concepts
of time and position, based as they are on macroscopic measurements
with clocks and measuring rods be extrapolated to the events of-
elementary particle physics or cosmology? Are four dimensions
sufficient for the description nfl}hn universe? We shall not d;ﬁcuss
these questions at this point as thery will recur. Ultimately,
the Jjustification for our notions must be how well theories based

on them describe the universe,



Newtonian Space—time and Gallilean Relatiuvity

What structure shall we ascribe to space—-time? First, we shall
assume that it is a differentiable manifold. It seems difficult to
maKe any progress without this assumption. This invoives including
as points.of the manifold not only those events that actually do
happen but also thuse-thaf tnﬁld pbaaibly happen. Space-time, then,
is a Smﬂﬂth.maniled of both real and potential euenta.E@éﬁ

Before 1905, when Einstein published his special theory of
relativity, almost all physicists believed that space—-time had the
structure E! x EE, the Cartesian product of a l-dimensional Euclidean
time and a 3-dimensional Euclidean space. That is, el s R! equipped
with a metric such éhat the distance between two times t1 and tE
is ity - t,iy and E” is R3 aquipped with a connection
and metric and with vanishing nonmetricity, torsion and curvature
tensors (in short, the space we study in elementary geometry), In
such a flat space it is always possible to introduce a Cartesian
coordinate system and write the distance between points % and
Y as

d¢ . ;} = [(x! —yI}E + (x2 - ?232 F(x3 - yIyeql/e {1)

where x!

and yj are the Cartesian coordinates of the points.

All events with the same value of t are said to be simul tanecus.

One can picture space-time as a succession of 3-dimensional Euclidean
spaces, each attached to a point on the t axis as shown in Fig 1.

(We have suppressed one of the coordinate axes of E9 in order

to draw the figure?>. In each of the £3- g all events are simul taneous.

We call this Newtonian space-time.
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In Fig.1¢a) the point of attachment is:taken to be the origin of
a-Cartesian coordinate system. In Fig. 1<{b) the points of attachment

of successive Ea’s are takKen to be a succession of points of the

x3 axis. This correponds to a coordinate srstem whose arigin is

3 direction relative to the coordinate svstem

moving in the x
of Fig.l¢(a), This is shown in Fig. 2 for a coordinate sy¥stem S-
moving with a constant velocity relative to a coordinate svstem S..

The transformation connecting the two cocordinate systems is clearly

xl” =yl (2a’
229 el (2b)
x37 =-x3 -yt i (2¢)
P s ¢ 2d)

We have included Eq.{(2d’) to indicate that the points of attachment
of S and 5 to the t axis are the same. This is called the

Gallilean transformatiaon.
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More generally, we can assume that the system S’ is rotated
relative to the system S and is moving with a velocity &

in an arbitrary direction; also we assume that the displacement
of the origin of 87 is 2 at the time t = 0, and that the origin

on the time axis is shifted by ty . The transformation is then

xi” = gl7 3 —vi't = al’ ‘ (3a)
J
tY = £t - tﬂ t3b)
or more briefly
¥ =0 % -0t - % ¢4a)
Y = ¢ - tﬂ {4b)
where O is an orthogonal matrix (071 = 0T}, This is the most general

form ué the Gallilean tr&ns%armatlnn. These trungfurmataunﬁ form
a 10 parameter group . There are three parameters necessary to

specify the angle and axis of rotation, three components of 3,

three of 3 and one of t;. These equations may be inverted to
obtain

< -1 2

=071 T+ gt 3w +-tg) + O

(Sa)



Mow, Tet uénénnsiﬁer_the equaticﬁa = mechéniﬁﬁ* we_shi11_'
assume that the universe consist of a collection of particles that
interact with one another through forces that depend only on the
distance between the particles. The equations of motion are

o R R e A e =
29 2 ey ey Y i ey
Mol X dt= E_Fﬂﬁc'#“ "KFT?“': s (ﬁa}.

.......

These equations are covariant with respect to Gallilean transform-—

ations. That is, when referred to the coordinate system S they become

2, z2 = : L g + :

x i £ o 1
M, d o’ dt’ = E F mﬁc!x_; 'K”Fiiﬂ.ﬁ. iéb)l
The distance between particles is clearly invariant under Gallilean
transformations, so the arguméntg_mfsthe forces are-the same in- :
both & and S’. When second deriuatiueg'with'reapect to t"are-fakpn,'
the terms in Yt and a vanish. Finally, the vectors X and F

tran5+nrm the Same Wiy under rotations.. Covariance of the Equatlﬂni

- of mechanu:s under ﬁnsp?acements of the mrig:n b? 3 and rotations

e v D 1mply that space |5 hﬂmogenenus and iautrnpr:. There . is no .

preferred Ia:atlnn By space, nor t5 there a pre+erred nrlentatiuh-t';{_

Covariance under’ dlﬁpiacement nf the nrlgln ﬂ% the time axrs by

'tﬂ'nmp1195 that there is no preferred tlme._Euuarlance under trana—

formation . to.a.uniformly moving coordinate system implies that-all

such uniformiy moving systems, calied jnertial systems, are

equivalent. One may imagine a number of rocket ships, each equupped
with a physics_ laboratory and an experimental phrsicist, moving

with constant velocities relative to one another at various 15:3-_..

tions in space and with various orientations and with UﬁEFﬁthFﬂﬂiZEd;ﬂ;:
cloeks. Each of- the physicists would verify that the laws of mech—'ﬁﬁ’J;
anics were valid in his laboratory. None could assert that there
was anything special about his location in space or time or his

orientation or his velocity. Democracy prevails among inertial
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systems. e ,

This is not the case fﬁr systeﬁé'Ehat are accelerated with
respect to inertial systems. If the term vt in Eq.{4) is replaced
by 2¢(t), them Eq.(8b) will contain the additional term
mﬁdzgfdt’z not present in the equations of motion referred to
the coordinate system S, ThiaxtErm'cnly vanishes if 2 is constant
or linear  in t. Thiﬁ'f%ﬁm'iﬁté 1iké'ah.aﬁditinnai force; it is
called an inertial force. An observer in aﬁ accelerated system
could detect his acceleration by the préﬁenﬁe n%‘inertia1 forces.
It is by the presence or absence of inertial forces that noninertial
and inertial coordinate systems may be distinguished. Note that
inertial forces are proportional to the mass of the particle acted -

upon. The same is true of gravitational forces, and this common

. feature will play an impertant role in the general theory of

relativity.

We have JUEt cseen that the laws of mechanics are cnuaraant

. under Gallilean transfnrmatJGna. This is the Gallilean pﬁ|n;_g1e

'-QF refativity, Hbﬁnlute positions in space—time and absclute

“wvelocities in space-time are meaningless concepts, as far as the

laws of mechanics are concerned, since in principle they can not.

-__be cbserued Haweuer, wlth the developement of electromagnetic .
'fthenr? in the latter haif af the nineteenth century, the pa55|ht1|ty
'“appeared of dEtECtlﬁg an abﬁniute ueln:Jty by electrﬂmagnetsc and-

_cptf:al_exper|ment5.

- Consider Maxwell“s equations for the electric and magnetic
fields E and B. '

V-E =.4x p Ly i
78 = 0 “ ' (7b)
*- -
VxEB=- 1,028 ' (7¢>
-;'ft- a
- +
TxB = cansey 34 fixc:g.ri_ | <7d)

As is well Known these equations predict the existence of
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electromagnetic waves that travel with the velocity of ¢ = 3 ¥ 1gl0
cm..s2c., the velocity of light. But, what is this wvelocity relative
to? 1% the waves move with velocity ¢ in one coordinate system, then
in a coordinate s¥stem that moves with velocity v relative to

the first, the waves must have a veloecity ¢ - 0, Maxwell“s equations
cannot be covariant with respect to Gallilean transformations.

They must take"é different form Enﬂma#ing reference systems to

take account of the different wave velocities in these systems.

Onl¥ in one system, the stationary syztem, would the velocity of
light be the same in all directions and Maxwell“s equations takKe

the simple form given above. This stationary system was identified
with a system that was at rest with respect to the ether, a
hypothetical medium through which the waves propagated. Experience
with sound waves in fluids and elastic waves in solids had accustomed
the phrsicists of the nineteenth century to think in terms of waves
propagating through a medium whose properties determined the velocity
of propagation.

Ingeneous optical and electromagnetic experiments were per-
formed to measure the velocity of the earth relative to the ether.
Rather surprisingly, that velocity was found to be zero within the
limits of experimental accuracy. The conclusion seemed to be un-
escapable that the velocity of light was constant and independent

of direction in all reference svstems.

THE LORENTZ TRANSFORMATION

How must the coordinates and time in a reference system S be
related to those in a system S°, moving with respect to the first,
i¥f the welocity of light is to be constant and independent of dir-
ection in both srstems. Let us consider the reference systems S
and 3 of Fig.2 whose origins coincide at the time t = +“ = 0 and
suppose at this time a flash of light is emitted from the origin.
Observers in § and S° would see spherical waves expanding from the
origins of their coordinate systems with velocity c. At the time

t the cbserver in S would write the equation for the wave front as



x2 + y2 442 - 242 = g (8a)

and the observer in £° would write the equation for the same wave
front as

R R LR P B N (8b)

Cleariy this cannot be satisfied for t’ = t, for x° = x,.
We wish to find relations between (x, », z, t) and L L O L
such that Eq.(3a) implies (8b>.
We can simplify yhe notation by defining x0 = ety xt = X s
x2 = ¥y x = z and similar expressions for the primed variables,

and then we write Egs.(8a,b) as .

o EJ‘
ﬂmﬁxﬂxﬁ = 0= 0 P (%)
where Greek indices will henceforth be understood to take on the
values 90,1,2,32, and Nep = 0 for a* £ and o = -~ Mgy = = ﬂEE
e g9 = 1 Eq.(9) will be satisfied if
e = = B
T'E"'.E"’x X H{u)“ﬂ:ﬁ}t X le:‘

where K may depend on the relatiwve velocity of the twe reference
Srstems. Because of the isotropy of Space we expect K to depend
enly on the magnitude of the velocity, v. We could equally well
regard the transformation as being from $° to S which moves with

the velocity - ¥ relative to 5°; then we would write
Mepx x5 = K=, o x* xB’ SEE
Combining Egqs.(10) and (11) we obtain
KC=Dyk¢d) = k2¢yy = 1 ¢12a)

K=%x1 C(12b)



Since when u = 0 the two reference swystems coincide,
K{0> = | and the positive sign in Eg.(12b) must be chosen.
We shall assume a linear relationship between the primed and

unprimed space—-time coordinates: thus

= L“;x ¢13a)
x¥ = L:,x” (13b)
po & -

L‘JIL}""" = o C13c)

Substituting into Eq.¢10) with K =1, gives

., % B
Trp..r -L]_l.-'L

v g

These are the relations that the elements of the transformation
matrix L must satisfy in order that the velocity of light be constant
and independent of direction in all inertial] systems. Transform—

ations that satisfy Eq.(14) are called Lorentz transformations.

We shall find the transformation matrix for the case of re]la-—
tive motion parallel to the z-axis as in Fig.2. Assume that the

= " =3
coordinates perpendicular to v zre unchanged, so

w1l = .1 (15a)
x2' = x2 (15b>
x37 = Lﬂaxu + Lgéxa ¢15¢)
’ + 0 g 3
B Luﬂx + L9« (15d)
Using
= e 8Ty
My = bp =y arpr (14a)

for (R,¥) = (0,03, (3,3> and (0,3) gives
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_ 0732 _ (L8372 (1&b)
e R 3
a-, 2 g7 .2
2B C y2 ~ (L3 ¢ 1
| (LB 3 &C)
(14d)

Now consider the origin of 8%, It must move with the velocity v

in the system 3, so

e 48 3’:{0 i LBJIE

e = = Bl 3

st Th LS
= LD ct - vt (lse)

After a bit of algebra we find

[coshd 0 0 =-sinho]

EJ’
= 1}
Lﬁ ] 1 0
] 0 1 0 {17a)
l=sinhte 0 0 coshd
whera

coshd = (1 - UEfCE}-le (17b)
Sinhe = (u/eX(l = y2ye2y=1/2 (17e)

We shall write out the transformation from (AW FyZ, B0 to On? v 27 873

tor easy¥ reference
Wi = w

¥y o= ¥
(18>
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Z =yt
(1 =~ vB/c2)1/2

z’ =

t.-' a t - ‘:U.-"'"CE:'E
SRR

This result is easily generalized to a general direction of

the velocity U, e hnte-thai the cﬁmpﬁnenta of % perpendicular to o

. . e
are unchanged, so we divide X into ite parallel and transverse
parts; thus |

-j..
+ -+
where
»
X,y = mMMm.x 3 {1%b)>
>
%= (1 - mm) -3 (19¢)

and i = v u is a unit vector, and | denotes the unit tensor.

In a similar way %~ is divided intoe its parallel and transverse
parts. Then

3 - - 0

x;. = X,, cosh® - m sinhd x C20a)
] R |

o -

X, = X, {20b)

and the general transformation formulas are

CAET O - - I S IR sinhe x0 (91a)
xﬂ’ = xU cogshe - ﬁ'? sinhe (21b)

In a more general form of the Lorentz transformation the
cnnrd:nate axes are rotated as well as having the velocity of

translation changed. The form of the Lorentz transformation dis-
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cussed above in which there is a change on velocity but no rotation
s Known as a boost. The transformation corresponding to a pure
retation through an angle © about an axis A was given in
Chapter 2 as

-+ > > .

X/ = [1 cos® + nn(l - cos®¥1'%x + (A x %) sine (22a)

fo = xﬂ _ . { : (22b2

A more general Lorentz transformation can be written as the prc-
duct of a boost and a rotation. From Eqs.{21) and (22) one can
identify the elements of the transformation matrix. For boosts

these are:

LE& = coshd (23a)

9% = - m; sinho. ¢23b>

Liﬂ = - m'fainhﬁ (23c?
- E.F !'J‘

Llj =ha ju, &M mji:nihﬂ e ¢ 23d)

For rotations the elements of the transformation matrizx are:

Lﬂ; = 1 (24a)

L% - L'ﬂ =g ¢ 24b)
B o i o

L'; =6 ; cos® + n N,¢(1 - cos@) + sing ¢’ jk”K (24¢)

Mow, we return to the general form of the Lorentz equation

and write Eq.(13a) as the matrix equation
x* = L x (292

with the understanding that x is a column vector with elements
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xn, X"y xE, HS and similariy for x‘, and L is & square

matrix. Me'may wWrite

a.l" FI

L = L HL Fﬂm’ﬁ‘ (2&a’

By

a%

n = LTn - (26b)

Taking the determinant of this equation and using the rule that

the determinant of a matrisx product is the product of the determ-—
inants gives -

det(M = det(LT yget(N)det(L) (27a)
from which

[det(L)]2 = { (27b)

det{(L) = =+1 (27c)

This divides the Lorentz transformations into two classes, the

proper transformations for which detcl) = 1-and the |mproper
transformations for which det(L) = =)

Letting (K,¥> = (0,0) in Eq.(28a), we obtain

P -
et e
e L
aopp et = gl e@ver @l 9w sn @2 (2
Gt a’ 0’ g’ Sa
from which
{Lna}E 2 1 (28b)
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This divides the Lorentz transformations into two classes; those

e

for which L9 » 1, called orthochronous, and those

for which LDS ¢ =1, called antichronous. Altogether, the Lorentz
transformations are divided inte four classes which are labeled

as follows:

B

Li det(L) = +1, Lﬂ;' 1, proper, orthochronous (2%a)
Lt det<lL) = -1, LD; ¢ 1, improper, orthochronous (29b)
Li det(L) = ikl LD; ¢ -1, proper, antichronous (29c)
Lt 2 oL N e Ln; $ -1, improper, antichrenous (29d)

It is easily shown that the Lorentz transformations form
a group. Only the part LI e a subgroup since it is the only part that
contains the identity. The rotations and boosts are subgroups of

LT-

+
If we repiace the angle ¢ in Egs.{21) by an infinitesimal

angle &% and replace the angle @ in Egqs.(22) by the

infinitesimal angle 56, then we get the transformations for

an infinitesimal boost and an infinitesimal rotation given below.

X/ = (1 = $OMeMy (30a)

X4 =41 + (500N} x ¢ 30b)

=
where the vectors ﬁ and N have components that are the

following matrices:

N1

i
SoO0oo

bk s [ e o
o RO == Y s

oo oo

r
M
]
oo
oo
oo
be
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000 0!
0 i 0!
00 00
N =100 i o
10-i @ O!
'0 0 0 0!
(20¢)
ol T
ML = 11 g0 D!
'0 00 0!
1000 0!
0@ 1 !
Mé = 1000 0!
1{ 0.0 g}
10 0 0 D!
10 0 0 1!
M3 = i00 0 0!
‘0 00 0!
i1 0 0 0!

We can combine the infinitesimal boosts and rotations to get a
: : \ T
general infinitesimal transformation belonging to L+; thus

X' = L ox (31a)

= +
L=1 - S0h*M + icor-N (31b)

We can obtain finite transformations corresponding to angles

¢ and ® by the following process. We divide ¢ and & B

the very large number N and let £ = ¢/N and £0 = o/N.

Then we apply the infinitesimal transformation N times to get the
an approximation to the finite transformation. In the limit that

iy



M becomes infinite this should be exact, so

A/
> s y
L<h, 030,80 = LﬁTm [1 + C1/NDC—0m*M + ien R3]

= exp(=0m'M + iOR"N) ¢32)

This is the Lorentsz transformation matrix for a transformation
consisting of a rotation through an aﬁgie & about an axis f
and transformation to a set of axes moving in the direction m
with velocity given in terms of the angle ® by Eq.(17).

The lorentz transformations discussed above are more properly
called homogenous Lorentz transformations. They constitute =

Six parameter group, the homogenous Lorentz group with parameters

$, ¢, ﬁ, 9. The group may be enlarged by adding space time

displacements a with components a"'. These transformations are

o SRS Lt R (33a)

o

ar more briefly
x* = L % + 3 (33b)

This ten parameter group is called the inhomogeneous Lorentz Qroup
or the Poincare” qQroup .

Problem 1.

Use the power series for the exponential and show that

Exp{-¢ﬁ-ﬁ} =1 + {E'ﬁhz (coshd - 1) - ﬁ'ﬁ sinhe

expCiOR N> = = ARTT @ HN-2in® Fane™

L -
=/ FAN) (5O -1) L0 5140
and that these are the same as Eqs.(21) and (22).
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MINKOWSKI SPACE-TIME

Consider two events x and ¥ with space time coordinates

-
xF = ¢x0 = ct,, ﬁ} and ?“ = iyu = cty. ¥). The quantity
s(x, & = (x0 -~ 0,2 _ 32 _ 3,2
=3 =
= Mg a8 IR ety (34a)

i€ invariant under Lorentz transformations. For an infinitesimal

separation with y“ = xP + dx* it is
ds? = M dx"dx" (34b)
We shall interpnef s{x, »¥» as the space-time separation of the

two events. If the two events occup at the same point in space

+ ; : : 3

(x = gb then s is their separation in time. I+ they

oceur at the same time ¢x0 = FE}, then their spatial separation
is Jsl. We interpret Eq.(34b) as the metric for the space and

Nep 2S5 the metric tensor. For lack of a compelling reason

to assume otherwise, we assume the torsion and nonmetricity tensors
vanish. Then, The curvature tensor also vanishes since there are
coordinate systems in which the components of the metric tensor

have the constant values ﬁmﬁ' In these coordinate svstems the
components of the connection vanish and the equations of geodesics azre

dEI#;dEE = q (35a)
witﬁ solutions

xt = aug + hj"' (35b>

K
where a" 3nd b* are constants. These are straight

lines. 1f s is eliminated between the equations for x0 and

3 e
*, one obtains
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=

X = alct - bﬂhfau + B (24D

This is the path followed by a free particle, according to Newton‘s
firet law of motion, so we shall interpret space-time geodesics as
the trajectories of free particles. We have included among these
trajectories those of particles that move with 2 velocity greater
than cj; this will be reexamined when particle mechanics is discussad.
This space—-time with vanishing tursinn,_nnnmetricitr and curvature
tensors and signature (1,3 (that is, when the metric tepsar i 8

reduced to diagonal form, one diagonal element is positive and

three are negative) is called Minkowski space-time and is

denoted by My, It is said to be a semi-Riemannian space,
since a Riemannian space has a positive definite metric. Minkowsk |

space—time is the space~time of the special theory of relativity.

Consider a space-time pu:nt p. Choose base vectors EH at p

with the scalar product g{e”, EP} = ﬂmﬁ' These vectors

span the tangent space at p. We may choose p as the origin of
our coordinate srystem, and then the position of any event <= given
by a vector X = xpEp_

A vector A in the tangent space at p has the ”1ength2"

S x £

This may be positive, negative or zero. Therefore the wvectors
A in the tangent space at a point may be divided into three
classes; those with A% > 0 called time-1ike vectors, those

with 1812 ¢ g called space-1ike vectors and those with
A2

= 0 called light-Tike vectors. Time—like vectors wi th
ﬁu > 0 are said to be directed toward the future, while those
with ﬁfﬂff 0 are said to be directed toward the past. The regions
of the tangent space in which these vectors |je are shown in Fig. 3,

We have suppressed one spatial dimension in order teo draw the picture,
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Fig: 3;
We may write
> Oy time=like
A2 = ¢a02 - 1 A1202 5. Jight-1ike (38)

¢ 0, space-1ike

Light-like vectors lie on the surface of the doubile cone

Al _ iIZJ. This is called the ljght cone. Time-1ike vectors

lie in the interior of the light cone, with' future directed vectors
within the positive light cone and past directed vectors within

the negative light cone. Space-like vectors lie outside of the
light cone.

Let us imagine an observer § carrying with him an inertial
srstem whose origin passes through the space-time point p at the
time t = 0. The observer can recognize that he is in an inertial
system by the absence of inertial forces. For this cbserver, as
he passes through ps future events are those with position vectors
X in the future light cone and past events are those with position
vectors in the past light cone. The tangent vector to his space-

time path is ED' Events whose position veectors are orthogonal to
g, are simul taneous with his passage through p. Since he passes

through p at the time xn, these simultaneous events have coordi=-
nates (0, Xy, Let us imagine & second observer S, moving with
veloci ty v relative to 3 and carryving with him his inertial
system whose origin passes through the point p at time t- = 0, We
shall assume that the spatial ceordinate srstems of § and S§¢ are
not rotated relative to one ancother, so that the two space-time

coordinate systems are related to one another By Egs.(21). The
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events that are simultaneocus with the passage of the origin through

p for observer S§’ are those .with x° = 0. Howeuer, these events
are not simul tanecus for obserwver 5, for setting 9" = ¢ in EQ.¢21b)
gives
0=x0 -3.2, - (29)
which is not satisfied for x% = 0 unless %4 = 0. We see

that observers in relative motion would disagree about the =simul tan-
sity of events,

Ubservers in relative motion would disagree about lengths and
time intervals, Let us imagine a measuring rod alligned parallel
to the z“ axis of the coordinate system of observer §. This ob-

server would measure its length to be

+ — —

where 27.,, and z2’¢ny are the coordinates of the ends of the rod.
From Eq.<18) we find

g S B
= - — — — Pl =

Lq [(z, o, Zegy) vt o, teyy23/¢1 Y ) (40b)

To obtain a meaningful result for his measurement of the length of

the rod, observer S should measure the positions of the ends of

the rod simultaneocusly, Setting tegy = t{E}’ we find L,
the length of the rod as measured by S to be

EFCEJ 172

L= 22y - oz¢yy = Lol - v Sl

The observer S measures a length L that is shorter than the length
Lﬂ haasured e~

Next, consider two events that occur at the same position in
the S“—system. These may be two ticks of a clock that is stationary
in the coordinate system of observer Sy for instance. The obeerver

S will measure a time interval TEI be tween them; the observer S
will measure a time interval T. To ecalculate the relation between

TU and T we need the inverse pf¥ Eq.(18). This may be done by



solving for * and t

. >
in terms of x~-

and t-,

ool

but the easisst

{41)

way 1£ Jjust to reverse the sign of v ocbtaining
¥ = x7
D=
z -;I + uti"
(1 = uEfczbifE
e A iuf;E}I’
2
{1 = v ICE}IIE
From the last of these we obtain
1 Ray TR

[Ct”
(2>

il

2
By ’ P g
ttl}} +{y,sc I{E}

T

— UE.-"'FI:E.:’ 1/2

71701 (42a)

Since the two events occur at the same place in the S/-system,

S TE e :J(E}; therefore

Observer S measures 3 longer time

It is meaningful

interval

to speak of lengths and time

(42b>

than doer observer §-,

intervals only

with the understanding that these are measured in a referense

srstem in which the measured object

is at rest.

We call these

proper lengths and proper timee and have distinguished

them by the subscript zeroc on Lﬂ and T,. I+ we speak of the radius
or lifetime of an unstable nucleus, we must understand that these

are to be measured with the nucleus at rest,

Otherwise we aobtain

a variety of different results that depend on the velocity of the

observer.

The trajectory of a particle
along some path
This

lina. ie a curve in

in space—-time. We call

d-dimensional

is a sequence of events that

space—time.

lie

this the particle’s worid

In order
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to sketch it on a 2-dimensional sheet of paper we may plat three
graphs of x| versus t tor x% for i = 1,2,3, as we have done

in Fig.4,

*

Fig.4

The space-time separation between points on the world line

i th coordinates x* # ho ivi i
wi t inat " and x" &+ dx IS5 ds. Dividing this by c

we obtain
4t = ds/c = (1/c)0¢dxP32 - 14
= dt(1 - §2,c2y1/2 (43)

I+ a coordinate system was attached to the particle o that its
spatial coordinates did not change, then dx~ = 0, and dt = dt,

S0 we interpret dT as the time interval measured by an clock

moving with the particle. By summing all of the dt’s between

points Py and P2y wWe obtain

F'E FE ;
T = gr:h' = gdtfi - uEICEJL"’E ¢ 445
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This is :#11ed the proper time interval between the two points,
measured along the world line, It is invariant; all observers must
agree on its value. However, it does depend on the path connecting
the points. A different world line passing through the same two

points would give a different value of Tip+ We may summarize
the distinctian between the increment of proper time o7 and

the increment of ordinary time dt as follows:

dT is an invariant but not an exact differentizl: dt is

an exact differential but not an inwvariant.

Presumably, it is the proper time that is recorded by a clock
that follows the world line, whether the clock is mechanical,
atomic or biological. When the relativistic laws of ph¥sics are
discussed in the next chapter, we shall find reasons for believing
this to be the case. This has led to a prediction that many have
found paradoxical; certainly it is startling at first encounter.
It is Known as the "clock paradox® or "twin paradox". Censider
two identical twine, Jim and John born in an inertial system S.
One of the twins, Jim, enters a rocket ship and journeys to a star
at a distance of 12 light vears, traveling with a velocity of 0.é&c.
His brother John stays home. On reaching the star, Jim quickly
turns around and returns home at the same speed. The world lines

of the two twins are shown in Fig.5.

£
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Fig.S.

Curing the journey John will have aged by

40
T(John) = dt = 40 years (45a2
Q
while Jim will have aged by
40
T¢Jim) = dtfl - (0.632312 _ (45 85407 = 32 years (45b)
0

The twins are no longer the same age when they are reunited.

We have done the the calculation in the inertial system in
which John is stationary, but that is not important. An observer
in any other inertial system would get the same result since T
is invariant.

It has been argued that this situation is a paradox for the
following reason. We could have assumed that it was Jim’s rocket
ship that was stationary and that it was John who took the long
Journey with velocity 0.4c. Then there would have been a reversal
of roles with T(John) = 32 years and T¢(Jim> = 40 vears.

It has been argued that either twin has the right to consider him-
self the stationary one, and hence there is a contradiction. The
resclution of the paradox is that Jim does not have the right to
consider himself stationary. His rocket ship is not an inertial
sy¥stem, He can determine that it is not by observing the inertial
forces that act when he reverses his direction to begin his return
trip. It is possible to calculate T in Jim’s accelerated system,

but then d7 is not given simply by dtv2 _ ﬁmﬁdxﬁdxﬁfcz-

This expression is valid only for inertial svstems.

The twin or clock paradox has been a subject of controversy
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ever since the publication of Einstein’s paper on special relativity
in 19035, and the literature on the subject is now quite voluminous.
A few vears ago an experiment was done that tested the prediction
in the most direct war possible. A cesium atoemic clock was taKen
on an arnund—thé-warid-a}rp1aﬁe flight. After its return it was
compared with a similar clock that remained behind. The two clocks
had followed different space-time paths and should have recorded
different elapsed times. Although this difference in elapsed times
was extremely minute, the accuracy of cesium Clocks is sufficiently
good that the effect was observable., It agreed with the predictions
of the theory of relativity within experimental error,

Since MinkowsKi space is flat, it is alwavys possible to find

inertial systems in which the metric tensor is L (B
However, we are not restricted to inertial systems. Wle may trans-

form to another set of space-time coordinates »F~ = x”ffxpj
which may be accelerated and rotating relative to the first. The

new components of the metric tensor are given by the usual formula

n: B

Opryps = K,H’ K:F’ nmﬁ (44

In the next chapter we shall formulate the laws of phrsics in a
generally covariant form, so they will be applicable in accelerated

systems as well as inertial systems,
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CHAPTER &

RELATIVISTIC ELECTRODYNAMICS AND MECHAMICS

In this chapter we shall write Maxwell’s equations for the
electromagnetic field, the €quations of particle mechanics and
the equations of fluid mechanice as tenser equations in MinkKowskKi
Space. We shall begin with Maxwell-’s equations, since for them only

the notation is changed; no modification of the Ph¥sics it required.

ELECTRODYNAMICS

In the usual notation of 2-dimensional vectors, Maxwell s

equations for the electric field E and magnetic field 5 are

VB = ax = | (1a)
VB =0 (1b)
Vx E == (1/c) 28/ ¢ ¢1c)
Ux B=anre d s cireryotrot (1d>

-’.

Because the divergence of 3 vanishes we can write B
-+

as the curl of a vector potential A. Thus

B = P, A (22
Substituting this into Eg.(1c) gives
7x B+ (1/e)83/5¢1 = 0 (3

Since the curl of the quantity in square brackets vanishes, we can
write it as the gradient of 3 sczlar potential - ¢, Then



E=- (/)R 2t - 70 (4)

We may form a 4-vector from the scaiar potential ¢ and
the three components of 3. ke denote it by Ak and

take the time-1like component Al to be ¢ and the space—iiKe

components to be the components of a. Thus
-
& =l 2y = (o, D =

These are the contravariant components of the d4-vector potential

in an inertial system with metric tensor Wxﬁ* [te
covarjiant components are

Y= (o A
ﬁp — ﬂpyﬁ = ., = &)
[ts 4d-dimensional curl is the antisymmetric second rank tensor
FJ-IP =;Hﬁy - Q},ﬁu . (7)

Writing ocut its components

- (rerdalrae - 265 <! 2 gl (g

H

1} 1
i - JA

" i 2
i & 2 _
F12 . ;iﬂl'z.-'"’;}: ;ﬁlf.;‘ x S EE (P
% 2
and similarly Fiqg = + g~ and FEE e El.

Putting it all together, we obtain

1
=
|
I
m
o
|
m
1)
m
P

v =

-2 483 g -gt (10)




The six components of the 3-dimensional field vectors E
and B 90 together to form an antisymmetric 4-dimensjonal

tensor F that we call the glectromagnetic field tensor. We mav

raise and lower indices in the usual way using the metric tensor 1,
Thus

BY — qhanlBe
F il S i O

Y =} gl g g3 g2
E2 g9 g -gi % b
5 82 B! o |

Note that raising or lowering indices with N is very simple.
There is a change of sign if the index moved is 1 » 2 or 3 and no

change if it is 0. Thus in going from EQ.<10) to <11} there is one
cthange in sign going from Foi to 2! and two changes in sign
in going from Fi.j to F'Y where gl = 1y 2y 3

We may take the covariant derivative of F*Y and contract

to get F“?.y, the divergence of F. In a svstem with metric
tensor M, the covariant derivative is just the partial deriva-

tive. For B =0 we get

v, el 0z 03
& Pl SRR E i g

-T7B=-4n p (12a)
For- f = 1 we get

T 12 13
Relgy SRS S S et

STCIAENPE /SR = JB o BB ADns =k waniena® tiBES
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with similar expressions for Pk = 2, 3. Defining the current
d-vector by

e el L 8y e reEn T (12c)
we may wWwrite

1l
FRY = ~ (ak/cy g (1zd)
] .
From the definition af the electromagnetic field termsor F as
the curl of the potential A, it follows that

Furegn * Funge * Fapoy

3
= (HF,P & Huiv i qﬁl v ,hj,ﬂ K {ﬂﬂ,h = ﬁa,uj,v €133

This vanishes identically since the order of partial differentiation

can be changed.

A€ 4-dimensional tensor equations, Maxwell’s equations take

the form
: #
FPF‘P = = 47/ cJ C1da)
L]
Tavae T Fyap * e =0 SRR

The four equations of Eg.(14a) are the four i nhomogenous Max-

well’s equations of Eq.¢{1a) and ¢1d>. There are only four nontrivial
Egs.(14b). These are the ones with 2]l three indices different;

namelr, (v, X0 = (1,28, ¢0,1,23, <0, 1,3, (D,2,3).

The first of these gives Eq.(1a) and the other three give Eg.(lg),
We have written the derivatives as covariant derivatives, so thase
are tensor equations and are valid in any coordinate system, not
necessarily an inertial sysetem with rectangular axes. However,
since Minkowski space is flat, it is alwars possible to use a

coordinate system with metric tensor N, we will do so when it
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Ils convenient; then, covariant derivatives become partial deriva-
tives, and.; s replaced by , to denote a derivative.

By differentiating and contracting Eg.(14a) we get the equation
of current conservation: thus

m
FHV = —(4T/c) =

This vanishes since the left hand side s antisymmetric in the
superscripts and symmetric in the subscripts., The right hand <ide
is the divergence of the current, It vanishes, indicating that
electric charge is neither created nor destroved.

Froblem 1.

Show that under a Lorents transformation to a referencs system

moving with velocity @ , the fields E and §
become E” and B’ where

1
]

E

E: = T[E + f: X ghﬁc]
-
B

ke
4 - .:: b E:‘..-"'"CI

-
I.-b.
I

¥

where

Y = (1 = v2,e2y-1/2

The subscripts !! and 4+ denote vectors parallel and perpendic-
ular to the velocity ¥,

We define the dual electromagnetic fieid tensor *f

with components

rd

“Fa, = (17240610600 F < S

where g is the determinant of the metric tensor and Cuper is



the completely antisymmetric Levi-Civita tensor density. The factor

-1.2 . . .
E=k Is necessary to convert the tensor density into a tensor

which we then contract with the field tensor to obtain its duatl.
In a Lorentzian reference system i = M = 1, & short

calculation gives

— =

My
+B2 +g3 g gl {173)
+83 -2 +gl

The indices mary be raised to obtain the contravariant companents
af the dual field tensor; thus

"0 +Bl +B2  +g3 ]
*ehy o |l g _gB g2
-82 +g% o -g! (17b)

Note that the dual tensor ¥F j3 obtained from the tensor F by
= =+ + +
the replacemente E » - B and B =+ E.
The dual of the current vector, denoted by *J, is a third

rank tensor with components

k] e P o r {18
Jpyn, = (172409106, ,,5 J ay

In & reference system with a Lorentzian metric, the independent
components are:

3
* i
Jgi2 =+ J
2
* Lo
Jpyg = —
¢18b)
1
® = + J
Jozz
0

* g2
St )
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Clearly, *JHFL ts completely antisymmetric: the other
components can be obtained from the above bvw permuting indices.

Maxwell“s equations can be written in terme of the dual tensors

% " :
F and "J. & short calculation shows that they are

Y om0 (19a)

Fuysa ¥ e T Tamrge = 7 T (1907

Maxwell“s equations take a very concise form when expressed

in the language of differential forms. We define a potential {-form

E’Iz -'-'p_: i b o i
gllEEs Agcdt + A dx + A Gy *+ Agdz ¢20)

Taking the exterior derivative gives

H:"_"Hﬂz HH”P
a2 dA ﬁv,ﬂ dxgxdx ,
= 2 PO T
= IHE{QF!F ﬁu,vj dx;hdx
= {lfszuF Exiﬂak? (21 a3

This defines ; the electromagnetic 2-form,
Writing it out we obtain

F = gl cdt;hﬁx + EZ caﬁﬂar + ES catﬁaz

d%ﬁdz B dzﬁdx B~ dx, dy (2ib)

- gl
A

The second exterior derivative must vanish identically. Writing

It out we cbtain

g

E;:ddﬂ:‘u

i R T



+ F + F }Ex' Exigxl’” (22

= Pl E Fe
A

The dual electromagnetic 2—-form is defined to be

o * K Vv
F=1/2 Fﬂv dxfidx
— I. o gt T = Pt
= = B edt,dx - B2 cdt gy ~ B3 cdt, 3z
- el 5 g, - T TS .
o Adx E d%ﬂdy (23)
Taking the exterior derivative gives
et S * P e T
da“F = 1/2 FF-W,_I. dxﬂdxﬂdx
= i A T o
131 FP-T-’,;-; + VA, B + LFFPdeﬂdx ﬂdx
= (4m/c) *7 : (243

g-4.

where we have used Eg.(1%b)., Maxwel] s equations may now be written

as
d*F = (anscy *J (25a)
dF = 0 (25b)
Problem 2.

FFPF and XF *FRV ane equal to

Show that the scalars F Hy

M
-2(EZ - EEJand that

xo bV 2
Fu F | = 4E-B

Suppose we have a vector potential A and we add to it
the gradient of of a scalar function x(x) to obtain ancther

vector potential Al; thus



|'i‘|]:'l' = ﬁ” + .':{,i-t CZ2&)

This is called a gauge transformation. Using the new potential

to calculate the field tensor gives

= F _ (273

Since the order of partial differentiation may be interchanged,

the terms in the derivatives of ¥ cancel. The electromagnetic

fteld tensor is invariant under gauge transformations. This freedom
to change the vector potential by gauge transformations is very

ugeful. Let us derive an equation that relates a¥ to the

current J*, Substituting Eq.(?) into (14a) gives
QPFHF = gpqagﬁp e AR T - (antsey J¥ (28a)
which may be written as
g2k - Jh a7 = e S (28b) 23
where the D alembertian operator
2 _ ¥ (28c)
02=2,2
has been used. Now suppose thaté}vgv * 0. We may make a gauge
transformation to a new potentjal A’V given by Eq.(24) and
require
i V o, ¥ ¥ = 0 (29a)
3,877 =2 8" +2 3 a
We must choose ¥ to satis+ty

72 =-2,a" (29b)
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This equation can be solved for X by a method we are about to

develope., The new potential satisfies

72%a* = anrcr JH (30a)
with the ﬁubiigjary_ccnditipn

Evﬁ’ =) (30b)

This subsidiary condition is Known as the Lorentz condition

or the Lorentz gauge. We still have the freedom of adding to

A" the gradient of a scalar function ¥ that satisfies

Jieqo=nn i (30e)
so the potential is still not uniquely determined. Having established
the possibility of eliminating the second term on the left in

Eq.(28b), We shalil drop the prime in Eq.(30a,b) and turn our
attention to its sclution.

First, we consider the homogenous, or source free, equation

obtained by setting J* _ 0. We try a solution of the form

i

AP ex) = c® expt=ikx> ¢31a)

where CF is & constant 4-vector and Kx is an abbreviation for
Kx = K,x” = Wt - R.g (31b)
and the components of the 4-vector kY ..,
KY = (wre, & (31c)
Substituting into Eq.(30) gives

(W2rcl - P12y ok = g ¢32a)

P:ﬂ
S 0 (32b’



i

a . - - —+
This is a plane wave with wave vector -K and frequency w = + c:f:

According to Eq.(32b), the amplitude d4-vector C* must be

orthogonal to the wave d4-vector kY,

The inhomogenous equation can be solved by Using the 4-dimen-—
sional Fourier transform

,qu-::.:;r = qux explikx) ﬁ“{x} C33a)

and its inverse
Aty = (2md g d*k exp(-ikxy a' (k) ¢33b)
e take the Fourier transform of Eg.(30a) by multiplvying both sides

b exp(ikx> and integrating over all space=time, On the left e

integrate by parts twice, thus transfering the differential operator

2
< from a' 1o exp(ikx). We obtain

~kZat (k> = cansed I ks

(34a)
from which
At = aa0 JF oy (34b)
where
ACK) = = 4U/ckZ
= —4n/c(wl 2 - 132, (34c)

The solution is now obtained by taking the inver<e transform of
Eg.<34a). Since the right hand side has the form of a product of

two functions of k, we may use the convolution theorem for Fourier
transforms to write the solution as

A gy = | s gew wogeny sgleras (35a)
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where 4(x)} is the inverse transform of 4(kK); that is
Ax) = - [4Trce2mdd S d exp(-ikx)[werc? - (B12171  (35p)

Now, we must do the integrations in Eq.(35b).

We write the 4-dimensional volume element as
4% = (1/e>dwd (Bdal

We introduce spherical coordinates in E-gpacg with the k=2

axis orientated along the vector ¥, Then

4k = %12 diRl sine do do (3b)
exp(—ikx) = expillIB[I%]/cose - wt] (3&c)

The integrations over the angles ¢ and & are easily done

and one finds

d4i{x = (3&d)
+9° o0

= 2x% 17 do | KaK [02-c2K237E CexpCiKrd~exp(=iKr) Jexpl—iwt)

- i3 Q
where r = }%| and K = !K!. In the term containing exp(=iKr)
we change the variable from K to K = -K and then drop the prime

and combine it with the first integral to extend the range of
integration from -« to +« instead of 0 to =, We obtain

+ ot -t
A¢x) = =~(2x€jpy~! ditw KdK [we =c2Kk217! expitkr -wt) {(3&e)
- iy,

We shall do the w integration first. We shall consider
it as an integration along the real axis of the complex W=plane
as shown in Fig.l. We may close the path by infinite semicircles
in either the upper or lower half plane, the choice being dictated
by the requirement that the contribution from the integrations
along the semicircles vanish as the radii of the semicircles become

infinite. Since the integrand contains exp{-iwt), we see that
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we must close the path in the upper half plane for t ¢ 0 and in the

[ ower haifdplane for £t » 0. Then we can use the residue theorem to
evaluate the integral.

) - FLANVE fﬂ_,._._--__

-c K

Fig.l.

Mow we encounter a problem. The integrand has poles at
W= & Kc. These Tie on the path of integration. lWe could
distort the path to go above or below one or the other or bath
poles, or we could take a principle value. Our choice must be
dictated by physical considerations. For the moment we shall choose
to take the principal value, and thevlater we shall discuss other

choices. When we takKe the principal value, each pole contributes

I times the residue at that pole and we aobtain
+o

ad dw exp(=iwt) [(w + cK){(w - ecK>I1-1
- o0

= i(iIﬁE:Hﬁ[exp{-icch - explickKt)] C372

where the positive sign is to be taken for t < 0 and the negative
B
sign for ti</0. Substituting this into Eq.{(34e) gives

b g o=
AC{x) = ={(x)/4%cr Sdi-{ {expit(r = ct)K — expilr + ci)K}
-

= ~(EX(1/2er)E8{r — €t? — &P + ct}] ({38a)
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Since r is alwars positive, this is

v 1/2 p I - > U
S dii, - cr r~ ct) +or ¢t
Cl72cr) S{r + ct) for t < 0O (38hb>

Which may be written as

L1222 l%ir — ) + S0 + £4£)]

A )
= (1/C)8(Pre -~ 242,

= fiHC}E{xPxP} (38¢c)

LY

In obtaining this last form we have the used the formula

£(Ff(r)) = 3:d+£dr:_15¢r ks (39)
|

with f(r) = pé - EEtE, and r;, =% ct are thé roots of f(r2 =0,

From Eq.(35a) we see that 4{x) represents the response of
the potential to a E-function current pulse at x* = (ct’, ﬁf} = 0.
From EQ.(38c) we see that this consist of two parts. One is a
spherical wave expanding into the future light cone, and the other
is a spherical wave expanding into the past light cone. An ocbserver
would interpret this as a converging spherical wave coming in from
r=9®= arriving at the origin at t = 0 and becoming an
expanding spherical wave. This is not what we expect. All of our
experience with the real world teaches us that there should be no
response prior to the cause. It seems that we have found a physically
unreasonable A(x>. We should require 4(x) = 0 for t < 0.
The trouble was in the way we handled the singularities on the
path of integration in Fig.l. We should not have taken the princpal
value in Eg.(37). To get a vanishing d{x) for t ¢ 0, we could
displace the contour an infinitesimal distance above the real axis.
Then when we closed the contour in the upper half plane, no poles
would be enclosed and the W integration would give zero. When we
closed the contour in the lower half plane for t > 0, both poles
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would be enclosed and we would get 2Ti (instead of Wi when

we took the principal value) times the sum of the residues. The
result would be that we would omit the term &£<r + ct) in
Eq.(38¢c) and multiply by 2 to obtain

4. (x> = (1/er8ir - ct) = | (40a)

We shall call this the retarded Green’s function and distinguish

it by a subscﬁipt r. If we had displaced the contour an infinitesima]
distance below the real axis, then we would have obtained no re-

sponse for t > 0, and the Green’s function would be

dafx} = {lAcrdE{r + Cct) ¢40b>

We shall call this the advanced Green‘s function and distinguish

it by a subscript a. With this Green‘s funct:nn the response pre:eeds
the cause. The first Green‘s function, that we found by taking the
principal value, Eq.38¢c), is the average of these two. We shall

call it the Wheeler-Feynman Green’s function and denote it by

Apix?. It plarys & central role in a theory called action—at—
a—distance electrodynamics that is discussed in the next chapter.

The requirement that the response follow the cause compells
us to choose the retarded Green‘s functionan and write the potential

aAs

SOIT - 21— cct=tH1d8¢R %) (41)
R T

AP (R, &) = dt’dex’

Next, we would liKe to use this solution for the potential
te :alculate the electromagnetic field due to a collection of arbi-
trarily moving point particles. We will label each particle with

a suhscript a-and let its charge be e, and its position at time

t be B{t). The charge and current densities associated with

particle a are
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P.% ) = Ea ¢y - 2t (42al

33{5?,*:3‘ =e_(di/dt> 5<¥ - D) (42b)

We define a 4-velocity for particle a whose space-time coordinates
are af By -

ot = da ~da (43a)

where we have denoted the differential of proper time along the
path of particle a by

o @ F.1/

We shall use a dot over a symboel to denote the derivative with

respect to proper time. Thus the 4-velocity of particle a is
2* = gaf/da = (c, d2/dt) disda : (44>
These may be used to write the d4-vector current of particle a as

fg;= e, a(t - 2t)) dasat ( 45) o

We find it convenient to use Eq.(28c) for the Green’s func-
tion; then to get the retarded recponse we take only the contribu-
tion from the past light cone of point x and multiply by 2. Substi-
tuting Eg.(45) and (38c) into (335a)> we obtain

.
= E 2 ] 1 "
Ahexst) = e, latra™ ST —RriocBiaees2) sPsrdeFeery) gasatr
)
4
= e, }da §{xa'xa)al (46)

In this last equation we have denoted the space—-time vector conpect-

ing point 2 to point x by xaj; its components are X' 1 a¥

The dot between xa and xa denotes the scalar product
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ARl e e G _
- - | {x 3, h(xv ay} (47)

In Fig. 2 we have sKetched the world line of particle & and

the light cone from point x with its intersections with the worid

line, We remind the reader that in evaluating Eq.(44) we take onilw

the contribution from the past light cone and multiply by 2 to get
the retarded fields. '

£

FuTeri
LieyT conwvd

FRem X

Lol &P Lo &

Fig.2.

We may use the S—function identity of Eg.{(3%)
the integral in Eq.(44) to obtain

to evaluate

i
atexy = e [ 3 (48)
L a[}a-xa: ] ret

The subscript ret indicates that all quantities are to be evaluated
at the retarded time t- = t - |¥ = ﬁf:f:, and a'xa is
anh abbreviation for a”ix - &)

p+ This is Known as the
Lienard=leichert potential.

We can now calculate the electromagnetic field tensor from
Eq.(?7). It is somewhat easier not to use Eq.¢(48) but to go back
to Eq.(44) and differentiate under the integral sign obtaining



T
Fiv: EaBda(éVQ - & 2 s (4%a)

where f = xa'xa. [t is convenient to take + to be the variable

of integration and write

el gd.{. st ek SRRt ok b el (4%h)
=1 a0y
Integration by parts gives
T L
FRY = - eagdf $(f> (dasdf)(d/dar[(dasdfia & f = a3 2 )]

, ho_v
= - e, ((dasd)(d/dadl(dasdfrca o' F - & 3 oy —(d¥e)

The quantities necessary for the evaluation of Eg.(4%c) are

2¥s = 20! - Hy = 20kt (S0a)
df/da = (da/df>~! = - 2cxarty : (50b>
Using these, taking the contribution from only the past light cone

and multiplying by 2, EQ.{4%c) becomes

SR d aVexar? —afixay? )2 e
a a
{xaﬁhal da {xa}xak ret

Some straightforward but tedious algebra is necessary to put this

into a form that is useful fer calculations. The resylte are

(R -By¢1 - gD (A x (7 - B> x dB/dt3]
Bet, ) = *'a;

RZ k3 cR k< e

.-}
b Ejret (S2b2

(S52a3
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wWhere
B = (3 - /R T 7 (S52¢)
R=I% - %I (52d)
R e T, o (52e)

These are the fields due to the particle we have labeled a.

To find the fields due to a number of particles, we simply sum over
4. This completely solves the problem of finding the fields due
to a collection of arbitrarily moving particles.

Note that in Eg.{(32a) the first term decreasces with distance
from the particle as R™2 while the second term i¢ proportional to
the acceleration and decreases as R™!. At large distances the second
term is dominant if the particle is accelerated. It represents the
radiation emitted by an accelerated particle. We shall derive a
useful formula for the power in the radiation emitted by an ac-
celerated particle. In our derivation we shall assume that the
particle is moving stowly (B <{ 1), but later we shall general-
ize our result so that it is applicable to arbitrarily moving part-
icles., At large distances from the particle we need Keep cnly the

radiation terms in the fields and cbtain

E

Y
Ce/cRY B x (B x dBs/dt) (52a)

B=#& x B (53b)

The flux of energy is given by the Poynting vector

% = fE xE}cf4I

Ccr41) | B127
= (e2/4McR2) 1dP/dt12¢(1 - cos28)R (53c)

where © is the angle between 7 and dﬁgdt, This flux of energy
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s radially outward from the particle and decreases as H_E.

Integrating this flux over a sphere of radius R centered on the
particle, we find that the energy radiated per unit time is

P = (284,3c3) 1d23/dt2;2 (545

This useful formula is Known as Larmor’s formuia.

We now ask what the relativistic genrealization of this formula
must be. We could go back to Eq.(352) for the fields and carry out
a simitar calculation without the assumption & <<{ |, but this
s a difficult calculation., Instead we shall try to construct s relz-
tivistic scalar that reduces to Eq.¢(S54) in the nonrelativistic

limit B <{ 1. The only quantities available for the construction
are the particles 4-velocity uV and its d4—acceleration duvfda.

From these we can construct the scalars

2 2 2, 2

u"’up = p°- (€57 = ¢v*) = ¢ (55a)
idu“fda}(dupfda; (S55b)
uF{dudeaJ (55¢c)

The first of these is a constant, =0 it need not be considered.
The last mar be shown to vanish by differentiating Eq.(55a), so it
need not be considered. This leaves Eg.(55b) as the only choice,
and in the nonrelativistic Timit it reduces to the square of the
nonrelativistic acceleration. We are led to write the relativistic

generalization of the Larmor formula as

z2
P = (EEEHEcE}I(dEaufdaE)idEapfda 3 | (56)

Problem 3.

Show that Eg.(5é> may be written as

P = (2e2,3c3) ¥S ¢ |dB/dt12 - B x dB/dtl2)
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where

r = (1 - p&y~tre

PARTICLE MECHANICS

Unlike electrodynamics, mechanics must be modified before it
Ps in accord with the postulates of special relativitr. In making
this modification we shall be guided by our aim of expressing
phrsical laws as relations among 4-tenacrs. When expressed this
way, the laws are manifestly covariant with respect to space-time
coordinate transformations. Also we expect the modified equations
to reduce to the equations of Newton’s mechanics in the 1imit that
the velocity is much smaller than the velocity of light, since we
Know that in this 1imit Newtonian mechanics is an excellent approx-—
imation.

We ask: how mayr Newton’s second law relating force and ac-

celeration
mdﬁ;dt = E CS7

be modified to maKe it a relation among d4-tensors? An ocbvious
choice is to replace the 3-vectors of Eq.(57) by 4-vectors. We may
construct a 4-vector velocity by dividing the infinitesimal dis-
placements of the position vector of a particle ax? by

the increment of proper time dv along the world line of the

particle to ebtain
ot = axtgr (58a)

where
EaxP 1172 o gp¢1 = o2,c231/2

= o Jetie iﬂuﬁdx (98b)
The contravariant and covariant components of the 4-velocity are

sean to be
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ot = rvie, 3 (S58c)
-}
up — }"{c, -y (S8d>
wWwheare
¥ = (1 - y2yelwls2 (S58e)

We write the generalization of Newton s second law as
mdu? sgr = F* (593

To use this equation we must be able to express the force
acting on the particle as a 4-vector. Let us consider the electro-

magnet force on a particle of charge e. It is given by

= )
e =sdilE e 40 Bt (40)

We wish to construct a 4-vector whose spatial components reduce

to this in the Timit of v <{ ¢c. Now E and E are

contained in the electromagnetic field tensor F"V and the

velocity U is contained in the d-velocity U, -

We can obtain a 4-vector by contracting these tweo tensors. Thus we

are lead to try

Fi-l- = a/C Fulﬁ"uv {&lar
For # = 1 this is

12

10 u u
e/c (F Ug + F 5 + F

LS
I

= a¥LE whD % B (62)

This does indeed reduce to the first component of Eq.{&0) in the
limit v << c. We are lead to write the relativistic equations of

motion for a charged particle in an electromagnetic field as
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mdu! /g7 = ma2xt/dre = esc Fuyuy = esc F“de SAT 143D

The three spatial components of this equation are

Yd/dtim¥rd) = e¥[B + ¢T x Biscl ¢ &4)
CArerrLEs
A factor ¥ can be igtiﬂﬁéd from both sides; then this equation
differs from the nonrelativistic equation of motion by the factor
¥ inside the parenthesis, s0 it does indeed reduce to the non-

relativistic equation in the Timit v <{ ¢. For K = 0 we obtain

d/dtirme2y = of.d (&45)

where we have canceled a factor of ¥ from both sides and multi-
plied both sides by c. The right hand side is the rate at which
the electromagnetic field does work on the particle. This leads us

to identify Yme2 = E as the energy of the particle. For small
values of the velocity this becomes

E = mee¢] - ye,c2y-1/2 2 2

&£ mCT + muc/s2 {&&)
The second term is the nonrelativistic Kinetic energy of the part-
icle. The first term me< s present even when the particle is
at rest and is called the rest energy of the particle.
We define a momentum 4-vector by

pk = mu* = rime, md = (E/c, B) (&7

Note that the spatial components of the 4-momentum differ $rom the
nonrelativistic 3-momentum by the factor ¥ and that the time
component is the particles enerqgy divided by c.

The presence of dT in the denominator of both sides of
Eq.(463) makes it possible to write the equations in terms of an
arbitrary parameter X. Let the world line of the particle be
given by x* = Py, Then the proper ftime is T = T(A).

We shall use a dot over a symbol to denote a derivative with
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respect to . Thus
= detsar = 3T @dr ( &68a)
. I.-E
dT/dn = 1./¢c Cﬂmﬁxﬁx 172 (&8b)

Using these in Eq.(483) and canceling a factor dr/dT from both

sides gives

v
dra. the SR R dx /9 (&5 a)

Lowering the superscript P gives

B

d [mc M, .x . W
= HE = g/c (G A, =2 A, (&a%bo
PRV S VR
di |« ﬂc:ﬁx ~ 25

It is easily seen that these equations are the Lagrange squations
drdn GLAR Y - 2L axH (702>

when the Lagrangian is taken to be

i 2. P . ¥V
Lex, %) = -mc¢n ok % 1% - esc a s (706>

v

We have chosen the sign 50 as to agree with the usual nonrelativistic

Lagrangian in the v <{ ¢ J1imit.
If we choose the parameter X to be the time t and use
=%
A, = {9,- ot EQ.(70) becomes
L = - mt2<1 i, UEECE}IKE - g + a c ¢|£ (7la)

In the v <{ ¢ 1imit this is

+
L = — me€ 4 mulr2 — o8 + e/c oA (71b)
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This differs from the Eaual nonrelativistic Lagrangian only by
the constant term - mc<.

The action & is defined to be

o .o _{;‘T."‘i'
R i I W 4

(3 j
S = HL dt = el S (72a)

and the Lagranges equations are derived from the requirement that
the path followed by the particle be the path that makes S a mini-
mum; that is, €5 = 0 for all variations of the path sxF¢n).

We write the functional derivative of § as

55;“’5?{”'{:;_} = 3 Lsax* — dsd> L/ ;‘.;p',': (72h>
Using Eqs.«70b» and (48b» we can write the action as
2= 2 v
S = - mc dT -esc) A,dx (73
We may also find a Hamiltonian and write the equations of
motion in Hamiltonian form., We take X = t and use Egq. (71a)
for the Lagrangian. The momenta are

p. =L/ % =7rmv' + esc al (74a)

for i+ = 1,2,3. The Hamiltonian is defined to be

= me<Y + ed {74b)
We Fan solve Eq.(74a) for ¥ and then calculate
Y= (1 - v, c2y"l/2 {Ifmczhtcz:a = EICZ{E + mécHl/2 - (74c)
Using this in Eg.(74b) gives the Hamiltonian

H= [c2if - e/chiZ + m2c¢%11/2 + o (74d)
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One mayr easily check that the Hamiltonian equations

dH2P,; (75a?

b, = - FHx (75b)

give the same equations of motion that were previously found.

In the work of this section up to this point we have assumed
that our coordinate srstem was an inertial system with a Lorentzian

metric tensor M, o = diag(+l,=1,=1,-1),

Since the space—-time
of special relativity is flat, it

15 always possible to choose such

% coordinate system, but is not necessary. For a general coordinate

system with metric tensor Sep{X?, the Lagrangian of
Eq.{70a) is replaced by

™ iiE'
.= hmcfgmﬁxmx 3172~ eyc ﬁyiy (74a)

We may use the results of Chapter 3 {(see Egs.(&4) to (73} aof that
chapter? to write Lagrange’s equations as

mEd2x /ar2 4+ PR o(ax®/ar (axTrdr] o o F“yquvde} (76b)

These are tensor equations, so if they are valid in one coordinate

system they are valid in all cocordinate systems. In a2 coordinate

K
syastem with Qe = ﬂaﬁ’ Freg = 0, and Eq.(7&b) reduces to
our previously found equations of motion, Eg.(s3).

One may easily show that the same equations of motion are
found from the Lagrangian

_ MY .V
L=-m'2 gy x X esc ﬁyx (77)

where the dot over a symbol denotes a derivative with respect to

the proper time T. The canonicz] momenta are

W . ¥
Pi =3dLgx = - mgw:»: Al = ﬁu (78a)
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The Hamiltonian is

- B

" P T B
= AR Qi X
= - 1/2m g®F(p, ~iesc A (pg = esc Ag) (788)

As the final topic of this section we shall write an action
function for a collection of charged particles and an electromagnetic
field and show that both the field equations and the equations of
motion of the particles follow from the requirement that the action

be an extremum. We denote general space-time coordinates by x°
and the coordinates of the. particle labeled a bw a“, The metric

tensor is Ouy %2 We denote its determinant by g, and since
the signature of space-time is (+1!, -3), g = -ig!, The differential

of proper time along the werld line of particle a is denoted by

o P;le

da = igmﬁda da .. The action functional is

2 .
S{a”, ﬁEJ = - § m_ < gda = E eafcgfﬁuauda
- cifiaw:c;rfd“x-:—g:”z FoghY
wy
=35 Sp Fs (79>

S is to be regarded as & functional of the world lines of

all of the particles a“{a}, and the potentials af (x> . We have

divided 3 into three parts, Ep, the first term, contains only
particle coordinates a' and their derivatives & . S¢

the third terms contains only the fields Ay and their derivatives
Py Epf contains both ﬁp and a and represents the interaction

of particles and fields,.
The particle trajectories and field configurations that make
S an extremum are determined by setting the functional derivatives

ss/saf and §S/5A, equal to zero. To find the particle
trajectories, we may write
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H + = | {8
(&7%a J(Ep Epf} LS _/%ta 0a>

wherae
" :
Sa = - m c Bda - Eaf; g@vda { 80b>

This is the action of EQ.{(73) applied to particle a. We know From
Eq.(74b» that the esquations for the trajectory are

2
m_fd“a"/da® + Fi§<da“fda:cdaﬁxdanj

= p/C FJ'LF{|:kanw#""=21ﬂl3I (30c)

To find the functional derivative of E+ we write

4
S = Sd X LF | (81a)
where
1/2 Ry
a — = F
Lg (1/14Tc) (=g .l (81b>
Then
B
- £ b e i
£S,/8A, 2 L A = B e PELV
s 1 B R BP0y
(1/8Me) (B/3x" Y[ (-g) FrY o Fuyaf, gl
= —(1/4Mc)D/axP) ¢ -g) 172 pPa; (81c)
By writing the current due to particle a as
A : 1 I||j..l,
Jt = e_(-g Wigedee! = mhe T A (82a)
we can write
< 4 g,
S = - L N UV g ! L
p¥ £(1/c S i “ﬂJa (32b)
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£8 bR 1= S e O R (82¢)
p+f (a4
where

J* =T 8
20 | (82d)

Setting the sum of Egs.(81¢) and (82¢c) equal to zero gives

RS e
(-q> @/x" (-1 2Py | 4. (83a)

which may be written as

Fﬁﬁ_ﬁ = -4l J= (83b)

L

These equations are recognized as the inhomogeneous Maxwell’s
equations. The homogenous equatione follow as identities from the

definition of Fuy 28 the d4-dimensional curl of ﬁu.
We see that both Maxwell’s equations and the equations of

motion of particles follow from £€5 = 0 with S given by Eq.(7%).
This is a very concise statement of the major |aws of phrysics and
is independent of the choice of coordinate system. Egs.(80c) and
(83b) are fully covariant.

Problem 4,
Solve Eq.(43) for a particle in a uniform and constant electric

field in the z—direction. Show that the particles velocity approaches

c asymptoticly from below.

problem 5,

Solve Eq.(43) for a particle in a uniform and constant magnetic
tield in the z-direction. Show that

ul = 4 sin{mcf L
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u? = g cos{w_T + &3
ud = constant.
ul = constant.
where W = eBs/mc is the cyclotron frequency. Note that the

period is Eﬂ?ﬁmc, when measured in terms of t instead
of T, s0 it depends on the veiocity of the particle,

Problem &.

Consider an electron of charge - le! moveng in the Coulomb
field of a nucleus of charge +Ze fixed at the origin. Assume that
the motion is in a plane and use polar coordinates r and 9.

Write Eq.(77) as

1"’ "2 .2 -2 i =
L= - (mc/2)t + m/2¢(r + rfd ) - (Zel/r)t i

Show that py and Pgs the momenta conjugate to t and g, and
the Hamiltonian H are constants of the motion.[Change the indepen-

dent variable from T to € and use the constamts of the
motion to find a first order equation for U = 1/r as a function

of 9. Show that a2 solution is

This is a precessing ellipse with a precession per orbit of

b9 = 2€(1/w —-13
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FLUID MECHANICS

Al though matter seems to be composed of discrete particles,
bt is a useful approximation for many purposes to consider it to
be a continuous fluid characterized by & mass density P(F, t),

a velocity 3(§,f3, a pressure tensor P(ﬁ,tb, an internal energy
per unit mass Uiﬁ,t} and perhaps some additional variables

such as thermal and electrical conductivities., These macroscapic
variables ubéy certain partial differential equations. For a fluijd

that is adequately described by £, 3, P and U, the nonrel-

ativistic equations of fluid mechanics are

-
Pgt - '::F”-.-' ,.j- _ U ":E-‘L‘:l:'
(P },t + (Py J + P 5 0 (84b>
E ' T
(Pu2/2 + U |, + T(PVS/2 +PUIVY ) J WP a2 (gae
¥ 1 = 14
When a comma followed by t or j appears as a subscript, it denotes

a partial derivative with respect to t or xJ. The phy¥sical

content is most easily seen by integrating these equations over
a volume Y and using the divergence theorem to convert the second
and third terms to surface integrals. The time derivatives capn be

taken out of the integrals, and cne obtains

ds/dt \ d3x p + g;quaJ = (85a)
b 5
. drdt §d3:=: Pul + {(puidvida; = —fFina_j (85b)
¥ .1
:If'dtgdziﬁuzfz + PUY + gcpuzfz + pPWvida; = —Suip"’d&j (85c)
v 2 s i

=
We identify Puv as the momentum per unit volume and cPUE;E + PUY

as the energyr per unit volume, consisting of Kinetic energy and

internal energy. The first terms in the above equations are the
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rates of change of the mass, momentum and energy in the volume U,
The second terms are the rates at which mass, momentum and Eneraqy
flow out of the surface 5 that bounds V., The right hand side of
£Q.(B3b) is the net force exerted by the surrounding fluid on the
fluid within V; this force changes the momentum of the fluid within
M. The right hand side of Eq.(85c) is the rate at which the surround-
ing fluid does work on the fluid within V, thereby changing its
energy. We shall call Eqs.(85a,b,c? the conservation equations for
mass, momentum and energy respectivelr.

We wish to find 4-dimensional tensor equations that reduce to
Egs.(83a,b,c? in the nonrelativistic limit, First, let us assume
that the fluid is composed of particles of mass m with a particle
density of niﬁ,t} particles per unit volume, Consider a Lorentz
transformation from the laboratory coordinate system to a coordinate

s¥stem moving with an element of the fluid. We know that 4(-g?d4x

is an invariant volume element, and since g = 1= -1
dixdt = d3xdt’ , (88a)
where the primed variables refer to the coordinate system moving

with the fluid. Now, dt” is the differential of proper time, so
dt” = (1 = ”Efczklfzdt, and

dox = (1 - v2,c2)1/2,3, . (8&b)

b
There must be the same numger of particles in daxr as there

is in d9x, so

3

NS . g e {Bdc)

Mg

where
Py
nﬂ = n¢l = v /cC }152 (B&d)

is the particle density measured in the frame of reference in which

the particles are at rest. We cal]l Ng the proper number densitvw.
It is the number density that has an invariant significance. We



rewrite the conservation of particles equation

M + {nu'J:J

Lt = 0 t87al

in terms of Ny and muitiply and divide the first term by c to obtain

& U +. _j_ ( nDEJ .
:?Ct {.I—UEHCEUE _;i'xJ (I_UE‘;:EJIHE

Multiplring this by the mass of a particle m and defining

Il

Q (88>

MR, = proper mass density (8%a)

i

Py

o

I

- .
¥ic, V) = fluid d4-velocity (E%¥b>

we obtain the relativistic form of Eq.,(B4a)

1]
( ) =

Ll

This is the conservation equation for proper mass or the number of
particles.

The conservation equations for momentum and energy, Eqs.(84b,c>,
constitute four first order partial differential equations. This

suggest that that their relativistic generalization is

L= B (90)

where T*Y is some second rank tensor constructed frem Pa u“: prRY
and U. In order to simplify the following discussion we shall

assume that the pressure is a scalar, so that phY _ Pﬂuvi
We expect that T is something Tike
™ = pfy¥ - MY (91

However, because of the equivalence of mass and energy we expect

the internal energy to contribute to the effective mass density of



the fluid. A tittle experimentation shows that

J-’-u}"' J-l'i"rp

0

THY = (py + pyUyset + P sePdu (92)

gives equations that reduce to Egqs.(84b,c? in the nonrelativistic

limit, as will be shown. We have attached subscripts 0 to Pg
and Uy to indicate that they are the pressure and internal
energy per unit mass measured in a reference system in which they

are at rest. We call PD the proper pressure and UD the proper
internal energy per unit mass.
Letting B = i = 1,2,3 in Eq.<%?0), we obtain
Bt L(Py + PoUsc° + P ,c2yuiy0) ($3)
7 0 0" g’ ¢

- 2 3 . - u
+ & ryxd [EFu + Pgllgre” * F"ﬂ;:E}u'uJ & Pung] =0

In the nonrelativistic limit ¢ + =, this reduces to Eg.(34b)

since ul 4 !, J© + ¢ and the terms with czﬁin the

denominator drop out., Letting # = 0, we obtain
?/5ct [{Fﬂ + Pﬂuﬁfcz i Pn;czbuuuﬁ = F 1
+ Droxd ECPeca F‘DUDH{:E + Pﬂfr_-zﬁuﬂu‘j] = 0 (P4a)
In the nonrelativistic limit, v << ¢ and
W0 % e+ w2r2e, oyl oz i (94b)

In the first term of Eg.(%4a), the terms contzining PG cancel
in this 1limit and we are left with

E '
[Py * Pnuﬂfc :H..l':Jt.llLZI!l.l + [FnuouHcE] & 0 {P4c)
1

Now writing
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(Pgu”u = p5¢c + vEr2crdt ) .=

2
= Eilgy ¥ 2c) po (94dd

1
¥

where Eq.(8%c? has been used. We are left with

2 B i
F R J
E':FEIU Pﬂuﬂ}u ],I-i + EFDU .-""'r':.],'-l {Pde )
which becomes Eq.(EﬁaJ in the nonrelativistic limit.
To summarize: the nonrelativistic equations of fluid mechanics,
Egs.(84a,b,c) are replaced by the relativistic equations of conser-
vation of mass energy and momentum, Egs.{2%c) and (?0), with T given

by Eq.<(?2) and called the gnergy-momentum—tensor of the fluid.

The relativistic equations are easily generalized, so that they are
valid in any coordinate srstem by simply replacing ordinary deriv-

atives by covariant derivatives; thus

i
(Pgu }-ﬂ = 0 (PSa)
¥
e o (PSb>

The only change that need be made in T is the replacement of Y
by o"Y in Eq.(92),

In the absence of dissipative effects, we expect entropy to
be conserved., [t is interesting to see how this emerges from the
relativistic fluid equations. To this end we contract Eq.(%0) with

the d-velocity to obtain a scalar that vanishes. thus

By = Z
Upd, T WPy + Polg/eT L b DrutuY - L I T
. K
Using upyu = c? and Eq.(8%c), one may show that
Py e 1
”uap” U’ = c qu
=i {CEHP)UF;PF ¥ CEFUVQP{iHP} (96b)

Then, a straightforward calculation leads to
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v
w¥p Uy + Pyu &, 1P (¥éc)

This may be written as

dUUIdT + PﬂdFdTiifP} (986d)

where

BE 1 -
d/dT = dx¥sdr d/5xY = u""ay (Pe)

1s the convective derivative operator. When it operates on a quantity,

it gives the rate of change of that quantity as it moves with along

& world line of an element of the fluid. From the second law of
thermodynamices we identi+v»
dUD + FndeEP} = TD dSE (P5+)

where Sﬂ is the proper entropy per unit mass, and T

is the proper
absolute temperature. Jur final result is

¥
dS/dT = u3 S = 0 (94q)

The entropy, measured in a reference system moving with the fluid,
remaine constant.

We now turn our attention to the forces exerted on an electric—

ally charged and conducting fluid. The Lorentz force per unit
volume is

Pap+izciaxB (97>

We have attached a subscript e on the electric charge density F
to distinguish it from the mass density which we have denoted hr

P. One may easily check that the three components of E are
the spatial components of

F* = 1/¢ FFFJF = 4-force per unit volume (98
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Lowering indices and substituting for g from Eq.{12d) gives

Fy = {1f4EJFuPFFL’l
= {lfﬂﬁ}{;l[FuyFyLJ - FFLFHF,A}
= ciqu:{;l:FquVll - P 12 CFHF,L * Fap,p??
= (17410 (3, IF, F "1 + 172 S
- Tuh,l (PPad
where
T = {lfdﬁ){F- =¥ + /8 (F%PE_yg%, (9Pb)
2 oy R Ty

is called the electromagnetic energy-momentum tensor (or some-—

times it is called the stress—energy-momentum tensor). In the aboue
derivation we have used Eq.(14b).

Writing out the components of the energy-momentum tensor, one
finds

A L :3

Tu = : c100a)
% J
=C F]
where

Tﬁﬂ = U = (E% + EEEJEﬂ = energy density C100b>

0 _ i T b = - i
Ti =. - Tﬂ = ¢cB = (E x B)Y /4% = c{momentum density) (100c>

7.0 =P J = (BB + BiBiysan - 5 J(E2 + B2y, 0x
! [

= electromagnetic stress 3-tensor C100a

i
"F
C;-. o
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Calculating the force from the divergence of the energy-momentum

tensor gives

for the spatial components i = 1,2,3., In addition to the divergence
of the stress 3-tensor, there is a term representing the reaction

tc the change in the electromagnetic momentum, as was to be expected.
For P = 0 we find

FO = /e Quigt + 73 €(101b)
where % = CEE i the Poynting vector. This term represents
a4 rate of change of energyr density due to an explicit time depend-
ence (first term) and due to a flow of energy (second term).

We can now define a total energy-momentum tensor by adding
the energr-momentum tensor for the electromagnetic field to that
for the fluid to obtain

Ky Wy Ky
T e R (102a)

where the tensor to which we have attached the subscript (m) to
dencfte matter is given by Eq.(92), and the tensor to which we have
attached the subscript (e) to denote the electromagnetic field is
given by Eq.¢100). The conservation of energy and momentum for the
combined system of interacting fluid and field is given by the very

concise exXpression

™Y =9 ¢102b)
g

ke have written it in generally covariant form by replacing partial

derivatives by covariant derivatives,

Froblem /.

From
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Show that the rate of change of proper entropy is given by
=+ - =+
dgﬂ;df = fI;pDTD}y[E L LV %)ch-EJ = PESI

This has a simple interpretation. ?[E.+ (v x Efc] s the

electric field in a reference system moving with an element of
tluid, Ej - PE31 i$ the part of the current not due to con-
vection. The scalar product of these two vectors gives the rate of

production of chmic heat. Dividing by PDTD gives the rate of
entropy production per unit mass,

INTERACTION OF & CHARGED PARTICLE WITH ITS OWN FIELD

Certain problems arise when one considers the interaction of
8 particle with its ocwn electromagnetic field. If the particle is
considered to be a point, then the field at itse position is infinite.
If the particle is considered to have finite dimensions, then one
must explain why the particle is not blown apart by the disruptive
force of its own field. These questions involve the structure of
elementary particles and cannot be satisfactorily answered at this
time, but we shall go into them in sufficient depth for some inter-
esting results to emerge.

As a preliminary calculation, we shall use Eq.{52a) to calcu-

lTate the electric field near a slowly moving particle of charge e

and position 3¢t). We calculate the field at the time t = 0

and. assume that at this time the particle is passing through the
origin with zero velocity but with nonzero acceleration. This i s
not a very restrictive assumption, since we can always choose a
Lorentz frame that moves with the velocity that the particle had
at t = 0 and with its origin at the position of the particle at
this time; Then we can make a Lorentz transformation to another
coordinate system moving relative to the first and with its origin

displaced. The position of the particle can be written as the Taylor
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Series

T
_}
=N

¢ty = 3ters20 + LTS3 4 o (103)

The dots over a symbol denote derivatives with respect to t, and
these derivatives are to be evaluated at time t

1]

0. We assume that
the particle is alwars moving so slowly that !3¢t)! << ct.

To evaluate the electric field at time t = 0, the right hand side
of Eq.(32a) must be evaluated at the retarded time t- = - R/c = prrc.
At this time ﬁfr, B and ér!c are all small quantities. We

rewrite Eq.(32a) Keeping only terms that are linear in these small
quantities and obtain

Eve = 2,73 (1 + 32.2/r2 + 32.B/r)

- 3r3 - B2 4 (BRLB - B (104)
Calculating 3; B and é at the retarded time t° = - r/c gives
CREEE . o R B (105a)
ﬁ(—rﬁ:l = = Er!cz + E;EEECE {105hb)
Bicen D il et Do (10Se)> .

Substituting these into Eg.(104) gives

g

Ese = 373 - (1r2rc2)3.¢1 + /02 + 23/3c3 (1087

The first term is the Coulomb field of the particle, and the other
terms are corrections due to the motion of thﬁ particle. We have
carried the calculation out only as far as terms in the third depr-
ivative of the particles, 725/ 7ow,

Mow let us imagine that an elementary particle is of finite
Size with a spherically symmetric distribution of charge with charge
density P(R)

on itsel+ is

Pir). The net force that the particle exerts
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i
C Py PEIIECT) (107a)

-
!

We use Eg.(10&) to calculate Eii}, replacing e by Fﬁﬁfhdgx’

and % by % - %~ and integrating to obtain

%{;} — Sdaxrpiﬁ,—} ':?- == ;-":l '_ 2 - E < 1:2 _2.’}{;{} _;:}..-'
(% 1S 2c< ! % —E*:l_ X -Xe1 e
+24/3c3 f (107b)

J

The Coulomb force exerts no net force and we are left with

& - FER ]

F = {fm)=B o tHaliauly C107¢)
where we have used
e = gcﬁx PCR) ¢107d)

and defined the electromagnetic mass tensor

(8m) = (1/2c%) \ ad®x | 3% pEypd/y 11 + RRy:2 -3

—_—

C107el

+ . . ) - - .
where n is a unit vector pointing from x to X“, One mar easily

gshow that the components of the electromagnetic mass tensor are

= 2y C107$)

where
U= 172 \eBx \ aSx/ pedy pedry 13 = 3ot ¢107g)

is the electrostatic energy of the charge distribution., Our final

result for the self force, to which we new attach 3 subscript s, is

Bo= - (qu/3c©2 + (2e23¢H3 (108)

5

}I
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We mar add this force to the external force that acts on a particle
and write the egquations of motion as

L E A 3
=R (1093

L
(m + 4U/3c€y3 - (2e2,3¢) -

Probliem 8.
Show that

U = .gde 1 Be2y 1281

Assume that the charge density of & particle is constant inside a
sphere of radius ry and zero outside. Show that

U= aezfﬁrﬂ

I+ one attemptis to account for all of a particles mass as electro—
magnetic mass, then one must conclude that the particlie’s radius

is of order EEfm:E, the precise numerical factor depending on how the

charge is distributed. This is called the electromaqnetic radius

and is of order 1U_igcm. tor- the electron.

If we had kEptltEPME berond the third derivative in Eq.(103)
then there would have been additionz! terms in the equations of
motion. Let us now suppose that the radius of the particie is re=
duced to zero. We would find that the coefficient of the fourth

derivative of 3 g proportional teo the radius, the coefficient

of the fifth derivative is proportional to the radius squared and

s0 on. These higher derivatives vanish from the equations of motion
in the Timit that the particle becomes a point. Only the coefficient

of the third derivative, (EEEHBCE}, ie independent of the radius.
As Problem 8 showed, the electromagnetic mass diverges inversely
as the radius, which may seem to preclude the possibility of point
particles. However, note that the electromagnetic mass appears
together with the ordinary mass m. There is no way to separate the
two. We cannot turn off the electric charge of the particle and

measure m. The mass that we measure experimentally is
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m. . =m + 4Us3ce 1105

exXp

and we Know that this is finite. We should write the equations of

motion of a point particle as

» & -

[ 1] +
m s - (22,33 2 = F

exp (i11)

gxt

This process of absorbing infinite contributions to the mass into

the finite experimental mass is Known as mass renormal ization.

Renormalization is an essential feature of modern quantum field
theory. We have seen an elementary example of rernormalization here.

The term in the self force

o

o, 2 3. =
ﬁrad = (2¢/3c%) 3 ¢112)

I8 called the radiative reaction force. In order to gain some in-

sight into the phrsical origin of this force, let us consider the

work done by this force during a time interval from Ty to ts.
We shall suppose that the acceleration of the particle vanishes

at the beginning and end of this interval. The work is

) i

W = g;t 3'Erad = (EEEJSCBJF{dt 2.3

=

= - ¢2e%/3c3) | dt 3.2

(1133

where we have integrated by parts in the last step. This is just
the energy that we would calculate that was radiated by using the
Larmor formula, Eq.(54)>. As the particle loses energy by radiation
there must be reaction on the motion of the particle.

In what follows we shall drop the subscripts exp on m and ex

.-}
on ? and understand that m is the experimental mass and F
is the external force. We write the equations of motion as

LR -

-
med — ¥3) = F ¢114a)

where
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s Z =
T = 2e4/3mc” » 10723, ¢114b)

This can be written as

o g
drdt {3 e Ty = - (1/mre~ VTRt ¢11de)

Now, suppose the force is zero., There are two solutions:

L #,P

i=0, and 3 = Ce*t/T (114d>

The first of these is the solution we expect from MNewtonian mech-
anics. The second solution with an exponentially growing acceleration
I8 clearly unphrsical. By replacing the second order differentiszl
equation of Newtonian mechanics by a third order equation, we have
introduced this additional and unwanted solution. We may abolish
this unwanted solution and make the equations of motion second order
again by integrating both sides of Eq.{(114c) from t to = and
assuming that the acceleration is always finite. We obtain
A
md = 1,7 \deret=t /T 2.4,

Xz
oo

1A% Adse™T Bit.i 9 (115)

&

In the second step we have changed the variable of integration to
St S B

EQ.¢1132 is an integrodifferential equation. Since only the
second derivatives with respect to time occur, the motion is de-
termined by the position and velocity at any instant for a given
force. However, the motion of the particle at time t depends on
forces at times greater than t. We are accustomed to thinking of
the force as the cause and the motion as the effect; we now find

that the effect precedes the cause, although only by times of the

order of 10723 45 4p electron. OQur investigations have led
us intoc an area in which quantum effects are important and classical

mechanics i not valid.
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Froblem %.

Consider the motion of a particle in response to an impulsive

force 3(t) = §(t), Show that the particles velocity is

V(-w) + (1/mret” T fFor + ¢ O

V(=) + (1/m) for t 3 ggéff

The radiative reaction force, Eq.¢112), is clearly a ronrel-
ativistic expression. In our derivation we assumed that the velocity

was small. Wg would like to generalize this formula to arbitrary
velocities, et must be the nonrelativistic approximation

to the spatial components of some d4-vector Fiad' lWe can add
to Eq.C112) a term proportional to the velocity, since that term

vt

would vanish in the limit of small velocities, We are led ta write
the radiative reaction 4-vector force zas

PR o 20237 it v i) (116a)

rad ]
where o is some scalar still to be determined. In order for
this to be a 4-vector we must interpret the dots over symbols to
denote derivatives with respect to proper time. Taking the scalar
product of the equations of motion with the d4-velocity Qives

miipﬁuﬁ = mdsda (& *s2) = md/dalc2,2) = g = A =
B i
rad
T <EEEHECE>E&JEH e (116b)
from which
-~ -
= h'“ H LL T
@ = = 4,7 /c?/= 3 2F (116¢>

Our final expression for the radiative reaction 4-vector force is

E - a it
Fi:,ad = Zg -’HECE [a“ -+ .H.Hl:,a “P:]',-".:E]

1,..3.
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UNMITS AND DIMENSIONS

The subject mf.uniti aﬁﬁ dimeﬁgians is often a confusing one.
The student beginning his study of phy¥sics with mechanice learns
that physical quantities have the dimensions of length, mass and
time. These may be measured in variocus systems of units such as
feet or meters for length, seconds or davs for time, siugs or grams
for iggéih and so forth. When electromagnetic theory is studied,
electric charge mar or may not be introduced as a separate dimen-
sion depending on whether the S.1. or the Gaussian system of units
|5 used. When thermodynamics is studied, temperature may be intro-
duced as a separate dimension. It may be noted that with the add-
ition of each new physical dimension, a new fundamental constant
is added to the equations of phyvsics. For ihﬁtance, in the 8,1,

system where charge (or equivalently, current) is a dimension, the

permittivity €5 and permeability Ho of the vacuum appear in
Maxwell s equations, but in the Gaussian system only cne constant

is needed, the velocity of light c. Along with the introduction
of temperature, one adds Boltzmann‘s constant K to the tablie of
fundamental constants,.

With the increase in our Knowledge of physics, it has become
possible to eliminate some dimensions and their accompanying fund-
amental constants. When Kinetic theory and statistical mechanics
were developed in the last century, it was found that in thermal
equjlibrfum at temperature T, each degree of freedom of a mechani-
cal system had an energy of KT/2. Therefore, temperature and energy

are equivalent and Boltzmann‘s constant kK = {.38 x lﬂ'lﬁepgg

per degree Kelvin is the conversion factor between the two. I[f some
clever experimentalist had designed a thermometer that measured
temperature directly in energy units at the time when the theory

of heat was being developed, then the Fahrenheit, Celsius and Kelvin
scales of temperature need never have been introduced and Boltzmann’s

constant would be absent from tables of physical constants and from
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the equations of phrysics. There may be some advantage for experi=
mental ph¥sicists and engineers to write theipr equaticons in the
units that they measure with mercury thermometers, but for the
discussion of fundamental phw¥sical laws it is an Unnecessary
encumbrance.

When Einstein‘s special theory of relativity was publ ished in
l#05, it Eecame'apparent that we inhabit a four dimensional universe
with time as the fourth dimension. We conventionally measure djs-
tances along the time axis in different units (seconds, for instance?’
than are used for distances along the three spatial axes {(centi-
meters, for instance), and the conversion factor between these

different units is the velocity of light ¢ = 3 x 10i0__ Oup

practice in this respect is 1ike that of cailors, who measure hori-
zontal distances in nautical miles and vertical distances in fathoms.
To the ordinary sailor there must seem to be a great difference
between travel in the horizontal and vertical directions, but ;5
sailor with a philosophical mind would realize that horizontal and
vertical distances are fundamentally the same and can be measured
in the same units. We can imagine building a clock that measures
time directly in units of length. For instance, we might construct
a laser with a Kerr cell shutter that emite a bries pulsa of light
that travels a Known distance, say half a Kilometer, to a mirror
where it is reflected back to the source. Its return is recorded
and it triggers another pulse that follows the same path. The pulse
of light shuttling back and forth between laser and mirror plars
the role of the pendulum in a mechanical clack. Each round trip is
recorded as the passage of one Kilometer of time. With time measured
in this way, seconds need never have been introduced and there is
no need for a conversion factor. The velocity of light drops out
of all of the equations of phrsics; it is just the dimensionless
number 1 cm. of length per cm. of time. Time has been abolished
4% & separate physical dimension, and with its di sappearance a con-
version factor vanishes.

AN alterpative to the above scheme for measuring time that is
closer to what is done in practice is the following: One chooses
a8 a standard of length the wavelength of a certain spectral line,

and one choses as a standard of time the period of the same spectral



e

line. Then the velocity of light ie clearly unity. This is close
to our present choice of standards, but different spectral lines
are chosen for the length and time standards. The standard of length

15 the wavelength of the Epln to EdE transition in the EéHP

atom, and the standard of time is the period of a transition between
two hyperfine levels of the ground state of th 133:5 atom.

With the above schemes for measuring time directly in units
of length, the question of the variation of the velocity of light,
as has sometimes been suggested, cannot arise. It is as nonsensical
as asking i f the number of centimeters per inch varied with time.
The velocity of light is constant and unity by definition. The
velocity of light could vary only if we had separate definitions
for the standards of length and time. For instance, we could choose
the standard of length to be the length of a meter bar and the
standard of time to be the period of the earths rotation on its
axis, the dar. With this choice of standards, the velocity of light
can, and in fact does, change with time. However, it seems preferable
to takKe the point of view that the uefn:ityxaﬁ light is constant
and that the period of the earth’s rotation decreases with time due
to tidal friection. .

Relativity has allowed us to abolish time as a physical di-
mension. Quantum mechanics allows us to abolish mass as a physical

dimension. DeBroglie‘s relation

F=+F B (117a)

associates a wavelength x = 20/1B] = 28K/181 with the momen tum

P. In relativistic gquantum mechanics this is generalized to
p* =+ «* ¢(117b)

relating the 4-vector momentum |:||J'l to the wave d4—vector. This
relation allows us to assign the physical dimension of inverse
length to every momentum with ¥ as the conversion factor. For a
particle at rest, only p0 = me s nonvanishing, and the length

associated with the rest mass m is
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X = AN/2% = h/mc {117¢)

This is thé Compton wavelength of the particle. The reciprocal of
this wavelength, measured in cm. ! say, describes the mass
of the particle just as well as the mass measured in grams. We may
regard fi/c = 3.52 x 1073% gm.-cm, as the conversion factor between
mass measured in grams and mass measured in cmﬁ"l_ If we agree
to measure mass in units of inverse length, then mass as a separate
phrsical dimension and the accompanying conversion factor fi/c can
be abolished from phrsics, '

Let us agree to measure time in units of length and mass in
units of inverse length. We shall also measure temperaturs in energy
units, but since energy now has dimensions of inverse length, so

does temperature. This set of units is called natural units.

There is only one phrsical dimension, length, and all physical
quantities have dimensions of some power of length, denoted by LM,
We have already seen that in this set of units length and time
have dimensions L while mass, momentum, enerqy and temperature

have dimensions L™}, 14 follows that velocity is dimensionless,

(Lu}, and acceleration has dimensions L™!, Frem Newton’s second

law we see that force must have dimensions L'E_ Then, from Coulemb’s
law we see that electric charge is dimensioniess, and then it follows
frum the formula for the Lorentz force that the electric and mag-—

netic fields have dimensions L™2_ gince these fields are given by
derivatives of potentials, it follows that the potentials have

dimensions L*i. Finally, from Newton’s law of gravitation it follows
that the gravitational constant G has dimensions L2, These di-
mensions of physical quantities are summarized in Table 1. We also
give the dimensions in a system with length (L), time (T), mass (M)
and degrees Kelvin (K) as fundamental dimensions. Useful numerical
values are given in Table 2. In natural units the physical constants
¢, i and K are unity by definition and are dimensionless; they never
appear in any of the equations of physics. The question of their

possible variation can never arise.
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Quantity LTMK Dimension Natural Dimension
length B L
time T L
mass M £l
temperature K gt
velocity [P L0
acceleration LT < s
momen tum MLT 1 1—4
energqgy MLZT™2 L4
force MLT™2 L™<
E; E“ HIIEL—IIET*I L—2
o, A P Mo =i
charge ML1/2 3/ 211 L
entropy MLZT™ 21 L9
gravitational const., G M= 3712 L
Bol tzmann‘s const., K MLET 2K 1 L9
Planck”’s const., # MLZT L LD

Table 2.
Quantity LTHK Natural
e = quantum of charge 4.8 x 10710 gn 1/2c 372 . -1 g gg5 = ¢137)-1/2

c =

.

/¢

velocity of

light

Flanck”’=s const.

3 x lﬂlﬂcm.fgec.

3.52 % 09 o o

1.05 x 107%7ang. sec.
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m = electron mass .l x ID'EEgm. 2.8 X 101Dcm71

G = grav. const. 6.67 x 107%m.%gm.  leec.™2 2 e 0 e

When natural units are used, dimensionxl analrysic is very
simple since there is only one dimension, length. As the following
problems show, it is often sasy to guess the answer to gquestions
to within a numerical factor. After an answer has been guessed in
natural units, if one wants the answer in conventional units, one
merely supplies sufficient factors of ¢ and f/c to restore the
dimensions of time and mass. In the problems that follow we give
the answers in natural units obtained by dimensional analwysis and
then give the anawe?a in conventional units with the correct numer-

ical factors when these are Known,

Problem 10.

In the preceding section we calculated the force that a charg-

ed particle exerts on itself in the form

|'£-_ M=+ n
s = % En d a-dt

where C_ must depend on the radius rg of the particle. We omitted
terms with n > 3, and ctaimed that they vanished in the limit of a

point particle. Use dimensional analysis to find the dependence of

C. g T

Pl s
mighete vy ~Ehe

where Hn is a numerical +factor.

.~ Problem 11.

When a star without angular momentum collapses to a black hole,



the radius of the black hole can only depend on the mass of the
star (and fundamental constants., of course’. Show that this radius

K-

HE 2 GM
m
= 20M/ =
A sphere of this radius is called the horizon of the black hole.
Particles and photons can fall into the black hole through the

horizon, but nothing can ever pass outward through the horizon,

Problem 12,

(a2 Show that the enerqgy per unit volume u inside = hohlraum

(a furnace with walls maintained at a temperature T) is

u o TS

= (M2/15) (kT 433

(b} Show that the emmitance E (energy emitted per unit area

per unit time} from a black body at temperature T is

E = T4

= (M2,40) (KTY3 432

Problem 13,

A theorem due to S, W. Hawking states that the surface area
of the horizon of a black hole cannot decrease and generally in-
creases in a dvnamical process. This irreversibility in the growth
of black hole surface area suggested to Jacob Beckenstein an analogyr
with the second law of thermodynamics and led him to propose that
a black hole be assigned an entropy that is proportional to jts

area. Show that the entropy of a black hole of mass M must be

S = GM<



e

= amkGM< e

Mow, use the thermodrnamic identity TdS = dU + PdV to show that a

Black hole must have a temperature of
T = ficS/8UKkGM

A black hole must lose enerqy by radiation, and as it does so its
mass must decrease. Show that & black hole of mass M must evaporate

by radiation in a time
3 w
t = 5120MM°G ¢(natural units)

Show that for a black hole to survive from the time of the big bang
¢about 1010 ¥ears ago) untill the present . its initial mass must

exceed 1014 qrams = EDE tons., This is about the mass of a small

asteroid. s

N

Ancther set of units that is useful in calculations when grav-
| tational effects are important but quantum s¥fects are of lessaer
importance are the geometrized units., In these units ¢ = 32 x
1T emideees sis paed as EheseEnoerd i omet AEEan between time and
length as before, and G/c? = 0.74 x 10728 cm./gm. is used as a
conversion factor between mass and length. The length associated
with a mass is the radius of the black hole of this mass. &s in
natural units, temperature is measured in energy units. In geo-
metrized units, ¢ = K = G = 1, whereas in natural units c = k =+ =
In Table 3 we give the dimensions of important physical gquantities

in geometrized units.

Table 3.

Quantity GCeometrized dimension

lTength L
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time L
mass L
temperature L
velogity L0
acceleration L~
momen tum L
energy . | s . L
torce | AL
E, B i
o, A - O
charge L
entropy L9
gravitational const., G L0
Bol tzmann‘s const., Kk L':I

Planck’“s const. h

The square root of the gravitational constant in natural units
is a tength called the Planck lenath with the value

o (B s RO somy

If one chooses this as the unit of length, one obtains a set of
units called Planck unjts in which all quantities are dimensionless
and c = Kk =H =6 =1,




L=

CHAPTER 9

ACTION-AT-A-DISTANCE ELECTRODYNAMICS AND THEORIES OF GRAVITATION

MHEELER*FE?NMQNH/ELECTEDD?HQHIQE.

We shall now discuss a theory of classical

electrodynamics
whose modern formulation

is due to Wheeler and Fewynmann. In this
formulation the electromagnetic field can be eliminated from the

theory, and the particles

interact directly with one another.
Qur starting point

15 the action function for charged particles
interacting with an electromagnetic field,

5=_Em¢25da —Eie!chgﬁiu da
a a mhi "

.
- 1/16%0 | d¥x cmghlfgpuvpuv

1

The notation is that of Eg.(?%?) of Chapter 8. As was shown there

the requirement that S be an extremum, €S = 0, leads to the
equations of motion for the particles and Maxwell’s equaticns for
the electromagnetic field.

MNext, we write

(22

where ﬁu is the field produced by the particle labeled a given by
Eq: (465 af Chapter @, and Al

: is the free field (that is, the
solution of [J A” = ().

In a similar way we write FFP as =
sum of fields prnduced by the particles and free fields, attaching

indices a,b,c,-——— and f where ever there

is space for an index.
We can now write the action as



2
da
5=_§matg
H

S {1552} dqx AP J
3 E &

4 L a=Hty
= d x (=gl F “F
C1/1&%e) E Eg g TRV
+ terms containing the free fields. CH

In the second term we have used Eq;{45} af Chapter 8 for the current

due to particle a. We may use Maxwell’s equations to write

1/2c 1y

a] Y

M =2
= = -
J, c/4%) (—g Qvtf Q)
ke mar substitute this into the second term and integrate by parts
to show that

ot 4 1/2-kv_ b
- = e
2nd term = tz;aﬂ¢}§ E id x{=g) aFuv (5

We can now combine the second and third terms and write the action

a5

S=-Zm :Ejﬁda
3 -1

4 172 Ky b
E x(~gJ F
+ (1/1&0e) E E d 9 = pr
+ terms containing the free fields, (&)

We shall take the terms with a = b in the szecond term and combine

with the first term using
d% = ¢ da d%« dtsda (7

to obtain
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Svee = (}m + &m ) da
a ) a a :
4
+ (1/18MedE d'x¢-gy ! %F & hy
2% Ky b
+ terms containing the free fields. (Bal
where
3- 5
Qma = - (lfldﬂchjﬂd (—g}lfzfdtfda?Fua FHP
Ly a

s 2r3
= (1/8mc2, j a2 c-gJI”Ecdtfda:tEf - B%, (8b)
=

We shall interpret this as the electromagnetic mass of particle a,
Comparing it with Eﬁ.{lﬂ?} and Problem 8 of Chapter 8 we cee that
the expression given there is the nonrelativistic limit of the
present expression except for a factor of 4/3. The integrand of
Eq.(8b) is a scalar density as it should be. The factor of 4/3 is

an artifact of the nonrelativistic caleculation of the preceeding

chapter. We shall renormalize the mass by writing Maexp — My * Ema

and identifying this as the experimental mass. e argue as we did
in Chapter 8 that it is only the experimental mass that is observ-

able, and we observe it to be finite whatever the two parte m -

and §ma may be. We drop the subscript exp in all that follows?

Mext we reverse the calculations that led from the second term
of Eg.¢1l) to the second term of EqQ.(3) to Eq.(S) to obtain

4
(1/8%c> Sd x(—g)I’;EF’P': F!—li':' = (egz/c) g,q#b s da o
Next, we use Eq.(44) of Chapter 8 for H:. Finally, we assume

that there no free fields in the universe, so we discard the free

field terme in Eg.{8a) and write our final expression for the action
as

- -
= — Z ar 2 da + ZZ¢e Eb,ﬂ"cz da |db b 4 Vi
(ab-ab) 0) axb & i Tﬁj
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This action functional! is Known as the Fokker-Tetrode zction.
The =lectromagnetic field has been completely eliminated, Charged

particles interact when the square of their space—time ceparation
ab+ab vanishes. The functional derivative of 5 with respect to

each of the particles coordinates is set equal to zero to abtain

the equations of motion of the particles. To see how thics comes
about let collect all of the terms in § that contain the coordinates
and velocities. of particle a and denote the sum of theze terms by
Sta). Thus

S(a)y = - macE gda + g#a (e e, /e gda gab %ﬂﬁpiiab‘ab3
i macz Eda + iea;;) yda éu ﬁ”(ay} {11ad
where
nngfn = de 5, 5{xb-xb) £14b7
b= b\_ 23

We recognize Eq.{11a) as the action for a particle in an electro-
magnetic field. Requiring £5C¢a) =0 gives th; particle equations

of motion, Eq.(74b) of Chapter 8. We recognize Eg.(11b) zs the
electromagnetic potential due to all of the particles exceot
particle &. We have reintroduced the electromagnetic field, but
this time only as a mathematical fiction, in the process of demon-—
strating that the equations of motion followed from the action
principie.

There seems to be one obvious flaw in this theory of electro-
dynamics; according to Eq.tllb) the interaction between particles
propagates along the future light cone as well as along the past.
This brings us face to face with a perenially puzzling gquestion,
Why is it, that in nature we only cobserve the retarded =olutions
uf'%axwe}Ts equations and never the advanced solutions? Maxwel]’s

equations are invariant under the time reversal transformation:
t+-t,§++§,g-}-§

Ps+p, 3o -3 {123



What breaks thi=s invariance?

The answer given by Wheeler and Ferrnmann is the following:

If we lived in a2 universe that contained only a few particlies, we
would see both the retarded and advanced fields of a charged part-
jcle. However, we inhabit a_unfuerié containing an immense number

of charged particles whose pﬂEEEﬂté we cannot neglect., The behavior
of one particle induces a recponce in the rest of the universe that
reacts back on the first particle. We shall treat this many particle
system in the following approximate way. As in Eg.{(34) of Chapter 8,

we write the relation between the Fourier transforms of the current
and the potential as

e

K _ .
ATk = a7k TH ok ¢13a’

where
ACK)Y = — 4N/ck? = -4mes/(we — c21R2:, ¢13b)

We shall divide the current into two parts; a part due to x test
particle that we imagine to be under our contreol, and an induced
current in the rest of the universe. lWe shall write the induced

current as the product of a conductivity ¢ and the electric
field. Thus

Hekr = Mao + g

{143)
jifk} = o(kYELK) = SLCiw/c)B - i K0 (14b>
I9ky = eper = .30 ¢14¢)

We substitute Eq.(14) into Eq.{13) and solve for the potential in
terms of the current of the test particle to obtain
.’,.1"

= Y > s
A= 4,0y + 4y 7- 4, )T (15a)



b = dzdt {15b2
where
Fa |
4, = (15¢)
.1 - 1wodSc :
A
o (15d)
= 1 - (iwodrc) (1 - c2Kk2 2,
_:|. 3
A0 = oka sek? (15e>”
g s i 2 -
32 = wkd,_/cK (154
where K = iﬁi.

The terms that contain ¢ are the corrections to the poten-
tial that result from taking into account the currents that are
induced in the universe. To procede we must make some assumption
about the conductivity. We shall adopt a simple model in which each
particle in the universe moves in response to the electric field
and is acted on by a damping force proportional to the velocity.

We write the equations of motion as

B dt + w3 = ce/miE (18a)
After fourier transformation, we solve to obtain

B = jeB/miw + i) (16b)
The current that flows in response to the electric field is

J = ned = o (16c)

where the conductivity is
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o B
P 1@ p ¢1&d)

4mMew + i)

. : . 2 1/2
In the above n is the particle density and W= 0 ng <My a0
is the plasma frequency. It is not difficult to extend the model
to a plasma of several species of particles, but nothin wery ntep-
esting results.

Using this cenductivity in Eqs.(13c,d} gives

T =4Mcli) + V) (17a)
i 2 Z . : 2
e = @, (W + 1V + Qv
k 2
i v —dMcw W + ¥ . (17R)
B (02 - 22y (e + (v - w,
where
0,2 = mpE v 22 (17¢)

The poles of 4y are at the approximate values

2/ 3
g s SS20 S
Wy = - @, - v, < (17d>
mz = = j¥

where we have treated Vv and W, as small. All three of
these poles lie in the lower ﬁai% W-plane, so when we invert the

Fourier transform, we find no response for t < 0 associated with 4

Howewver, d- has poles on the real © axis at w = % cK, so
these would give a response for both t < 0 and t > 0. [f we cal-

culate the electric field, we find



iy

E = (iw/c)A - iR (18)
=
= CiwserayJ, - cfmzchHEJQJIJtD

+ (iR/c2KZy (w2 - c2K2y, Zesinl

The factor (w2 - <2k2) that multiplies 4y cancels the pales
on the axis, thus removing the response for t < 0.

It is possible and convenient to make a gauge ftransformation
on the potential that eliminates the unwanted response for t < 0,

Since it is not present when the electromagnetic field is calculated.

We wrijte

A = A + il x .: (19a)
04 = ¢ + ¢iwserx | | (19b)
where
X = - Ciwrek2ya, - 4.5g. 0 (19¢)
1 2°Y¢

has been chosen to eliminate the unwanted terms. e Find

=
Ar = 4,7, (20a)
b’ = (4 0 ¢20b)
3 ~d4)Jd¢
where
dE = {ME.-”EEHE:JJI ¢20¢ )
4, = {mEIEEHE - I}AE ¢ 20d)
In tnverting the inverse Fourier transform, we shall only be

interested in the limit of vanishing w "
since we are not interested in real plasma effects. In this limit



the results are very simpie:

At Fods Tl =L RN o0t (21a3
dq e | t21lb)
al oy = g n A ‘?Jp

(X % . c21ich

The effect of the tenuous plasma that fills the universe is
to replace the Wheeler—-Feyrnmann Green’s function with the retarded
Green’s function. MNote that this came about because the damping
term in Eq.(14a). The effect of a positive ¥V was to shi+t poles
from the real axis of the w-plane into the lower half pilane. The
Lime assymetry in electrodyvnamics has emerged as & consequence of
the time assymetry in the equations of mechanics that we introduced
when we wrote Egq.{14a) with =z damping term, thus destroving its
invariance under time reversal. If we had chosen V to be neqa-
tive, then poles in the Green’s functions would have been shifted
into the upper half w-plane and advanced instead of retarded
potentials would have been obtained; in effect, past and future
would be interchanged.

Let us write the Fourier transform of Eq.{21c) as

B 5 H it

where ﬁ% is the potential due to currents induced in the plasma.

It follows that

K H
AT = (. - aypdd

t

i

: u
ifzidr - daJJt (23

The induced fields are the difference of one half retarded and one
half advanced fields. When added to the fields that arrive directly
from the test current, the advanced fieids cance! and the retarded

fields add, giving the full retarded fields.
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ey

The interaction of the a particle with itsei+ has already beer
taken account of; it gave the electromagnetic correction to the
masz of the particle of Eg.(8b). The test particle will also exper-
ience the fields produced by the induced currents that we have Just

found to be one haif of the difference of roetarded and advanced
tields; namely

Ko LR
SEERRGE, SR 24>
If we repeat the calculations of Chapter 2 that led to et LU
we find that the force exsrted by these fields is

ﬁi = qEEEEECE}E {25
That is, the unjverse responds to the test particle with a force
that is just the radistion reaction that we previously +ound. This
gives Us a rather different view of the loss of enerqy by radiation.
A particle radiates only because there are other particles in the
untverse to absorb the energy. If thers were only one particle in
the universe, that particlie could not radiate. The energy lost by
the radiating particie is absorbed by particles whose space—-time
separation from it is zero. Loosely speaking, the radiating and

absorbing particles are in intimate contact, &lthough the separation

in space or in time may be arbitrarily large.



LORENTZ INVARIANT THEORIES OF GRAVITATION

In attempting to construct a relativistic theory of gravita-

tion, we shall be guided b» the very successful theory of charged

particles interacting with the electromagnetic field.

this theory. lWe write the Lagrangian for particle a of mass m_
charge e_ 2and coordinates a as
o

Let us review

li'l'l'l"l F *
- - S23N El - {
L {ma iy a Ea ﬁu a Ja

24

The dot over a symbol denotes a derivative with respect to proper

time; the differential of proper time is

L2r)

L A o
da = ﬂﬂﬁpda da 3

It is convenient to workK in pnatural units with ¢ =4 =1, as this

will simplify dimensional analysis. Lagrange’s equations give the

equations of motion

g e 43 (28)

These must be supplemented by the equation

¥ :

4 = 1
ﬁu a3 ) hia Eb db b#Efah ab> (29
s relfated to the

that tells us how the electromagnetic potential
is along the world

charged particles that produce it. The integral

line of particle b. Performing the integration gives the Lienard-

Weichert potentials

Ay @ Eh“b[_'gﬁ_l (30)
= L]
= =8 ab ab
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The subscript indicates that the guantity in brackets ic to be
evaluated at the points on the world line of b where it is inter-—

: , v
sected by the light cone from the point a ., To get only

the retarded interaction we omit the contribution from the future

light cone. To get both retarded and advanced contributions we take

contributions from both past and future light cones and divide by two.
We now ask ourselves why only the first power of the velacity

should enter the interaction term of the ﬁagrangian as is the case

for the electromagnetic interaction eaﬁ“a - Is it not possible
for other powers of the four-velocity to appear. In tr¥ing

Lo construct a theory of gravitation we are led to try the
Lagrangian

{1;’2 ']'l- J;'LF-I"'II .F.. il + il iH‘
L = ma " a a g gua
el eV i .I'l'-ll""l-}"
+ 172
Quya a + 1/3 g#pra a a + etc.: (212

We have included a factor of m, N each term since we expect
the gravitational force to be proportional to the mass. In the

e

above g js a scalar, Eu is a vector and in general QHV?...
is a covariant tensor of rank indicated by the number of indices.
Without loss of generaiity we may assume that z]] of these tensor
patentials are symmetric to interchange to anv pair of indices.

We would expect that only one of these interaction terms was non-—
zero; otherwise we would have to attribute gravitation to two or
more fields. The dot over a symbol denotes differentiation with
respect to proper time as before, but we no longer require that

the differential of proper time be given by Eq.t27). For the moment
proper time is undefined.

Lagrange’s equations give the equations of motion

V oy v V
+ T +r1r 3 + [ 5+ I 3 3%
My m _y uyp? Pl o
G !FHT wWa ¥ t""-]"‘ 0L
{a C O s 3 ]l + . =0 2470
+ [gny? + » Wype® * 2 etc (3



Al

Whera
= - g (328)
i S y
= c s 3 )
Dy = By 0y (32c
= 1/2[g e R
rﬂvm : guv,a gﬂa,v gpg,u] ¢ 3zd)
= 1/3lg e T - g 1 (32e)
Muyre wvr,e T wre,v T Fuve,r Vra, K

The Hamiltonian

iy u
TR S T

LR 4

t1r N
Ta & ﬂ#va .

- i = BV
a + 1/2 qua a + etc.) (33

s easily shown to be a constant of the motion. This may be used
to define the differential of proper time da. Let us suppose that
there are no gravitational potentials of higher than second rank g
then we drop the terms + etec. in Eq.¢{33) and solve for da. I1f we

choose EH.frna =1, we find

+

ooy
da = [ Oy Spy2da da J1/2
Ir- &5

(347

We see that the proper time depends on the gravitational potentials.
Our choice of EHfma has made da reduce to Eq.(27) in the absence

of gravitational potentials.

Next, we turn to the relation between the potential auvr and
the massive particles that produce it. Analogy with Egq.(29) suggest

that we postulate



g -/

Ly ﬁ
ta » =X Gm Ekdb tiab'zpy K ¢
g!'l‘lr"}’. ¥ om b#a b i‘kv}’n " oa 35}

where » is a suitably chosen numerical constant and Ky py =
some appropriately constructed completely symmetric tensor. The
integration over db may be performed to obtain the analog of the

Lienard-Weichert potentials with the result

H“Fr' &

E’Av}'... =xZI g m E | (34)

'b"ab! ,
ab ab

The factor ${(ab*'ab) in Eg.¢{35) assures us that particles

interact gravitationally only when their space-time separation is

Zero. Lorentz invariance is satisfied by requiring Ky and hence

QFPT to be tensors. The only guantities available for the con-
struction of HHFP are hH’ ah“~= a - b# and ﬂ#v. Inspection

of Eqs.(31) and (34) shows that gy, and K, are
E , o om F}-l [
dimensionliess. [+ abH is used in the construction of H#FF

It can be made dimensionless by forming the combination iabﬁfa'abh.

The construction of Huv? is further restricted by the

requirement that it be svmmetric to interchange of any pair of
indices. Let us consider some examples:

There is only one scalar field

W
(a » = Gm db 4{ab"
gt a kgta bgl ab). (370

There are two vector fields

e (1) ro
1 = Gm ACab”

~E2Y ; T (38D
|. gl'l ':-EI.,F Lb ab




T

The first of these choices gives a theory closely analogous to

elecctrodynamice. There are four choices for a second-rank tensor:

~C1) = :
(rgﬂy an hﬂ v

~i 2

9y By EE#EEH
4 (B ab) ©

= 3 E G d{ab’ 35

"3, > by M, | 90 dlab’ap) . (39>

=[TRY’ a? 3

~(4) . , ab "¢

Ay ':EL,}_,J J bFL ahr: ; Eh ",

| b'ab

There are six choices for a third-rank tensor. We shall not give
any other examples, since the pattern should now be clear,

We shall require that each theory reduce to Newton’s gravita-
tional theory in the limit of small velocities and weak gravita-

tionl +ields. By small velocities we mean

ol 08 i = 1,2,3
402
2
for all a. By weak gravitational fields we mean
- (41>
In this limit Eq.{31) becomes
L = - m/2 *m_s2id3/dt!% 4 (m /nrg i T
. & a R0 7



i

(Only one interaction term has been retained;

rnamely, that for a
tensor of rank n). This is the Lagranagian for a nonrelativistic

-* . -
particle moving in the potential cmafnﬁguﬂﬂ|lia,t}. In this 1imit

g v 0 - -

b abe b ahﬂ::abﬂ = - 'cm:i = & o (43a)
and

abuﬂh'ab:: 1 (43b>
It follows that K = I 1.

000... =

Then the factor A may be chosen
as ¥ n s0 as to give

= + ) (44>
(my""? 9500, s SR AT

as the limit of Eq.{(34). We see that each of our Lorentz

invariant
gravitational

theories gives

-+ 2
L = g e A2 Vdasgtl T e e (10 3 (453
= o = b=a Emamb ab

L]

for the Lagrangian of particle a in the small=-velocityv-weak=-field
limit., This agrees with Newton’s theory.

We are faced with an embarassment of riches. How shall we

choose from among this infinite number of Lorentz-invariant theories,
all of which agree with1hewtnn“5 theory in the lowest approximation?

Cleariy, we must appeal to observations to cast the deciding vote.
The predictions of small deviations from Newton’s theory must be

looked for and compared with observations. Planetary motion seems
to be a good place to look.

We shall calculate the orbit of a planet about the sun, which

s assumed to be fixed at the origin of the coordinate system.

This will be done for only one of the theories as an example, and
then we shall quote the results for the other cases we have con-

e : , . .
sidered. For our example we shall choose gy, - This is of historical
interest since it

is a theory of gravitation proposed by the math-
ematician and philosopher Alfred North Whitehead in 1922. Since

the sun is fixed, ED =1 and b, = b, = by = 0. Eq.(39) gives



;o1 R =y =0
i el =
(! x? e s E @ e
T2y
9y = ¢zemry 4 v = j =1,2,3 &
—x' /) L =0 (44)
e = Bl a
~¢xt oo TR R
.
¥ =0 J

The orbit may be shown to lie in a plane as in the nonrelativistic
theory. In polar coordinates the Lagrangian is found to be

2

L = = CES/2)01 = 2BM/PY + CPE/2)CL + 2GM/Rd

r26%,2 = (26M/rOmt (47)

+ rcp
(Since the orbit is independent of the mass of the planet, we have
chosen the mass to be unity.) Since L is independent of t, ¢ and
the proper time, three constants of the motion are immediately

found; these are.

Py = FL/2t = = tC1 - 26M/r) - (26M/r)n (48a)
= L = rzi- {480
P@ -
map,t+pprtpe-Lm=Li (48¢)
E sy o B Waipie

Eq.(48a) and (48b) may be used to eliminate t and ¢ from E. Then
the independent variable is changed from proper time to ¢ by
using

. 2
r = 9{dr/do) = (P¢Ir Jdr/de = - pﬁﬁdedf} (4%a’

where

gy = 1.r C49b>



9-1¢

We find
2 2 2 2
(dusde> + u ¢l - 2G6Muy) + (4EHEHp¢ Yu = (2E + pt y (S0a’

Differentiating this equation gives

d u/de” + u +26ME/py 2 _ ggm, 3 (S0b)

We shall solve this equation approximately by assuming that the

orbit s nearly circular. We write

— + 3 {
U= ug *ou (8 lull{{ u, 51)

where ug is constant and saticsfies

2 : 3
+ =
ug ﬂerI'~'1E.r";:r':| EEHUD {S2a’
~ 2 2 i
ug = - 4GME.Hp¢ = 1731l = e (S2b)
and uy satisfies
dE fd¢2 * U = 36M(2u_u, + u 2} (53
Yy 1 v T A LT

Thus we find approximate solutions of Eq.(50) to be

1 + & coswd
U= Qe B T (54a)

ai] - EE}

where

(S4b>

afil = e ) acl &y

Eq.{44> has the form of a precessing ellipse of major radius a and

gccentricity e. The minimum value of r occurs at ¢ = 0 and again at
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¢ = 2M Ww. Therefore the precession per orbit is

8¢ = 2N(1/0 -1) ~ 4GM/a(]l - ez:- (S5

This is the same precession as that predicted by the general theory
of relativity, which, as is well Known, is in good agreement with
observation. - ' -

The calculation of planetary precession for the other theories
proceeds as in the example. In 2ach case the three constants of
the motion of EQ.¢(38) are found. The calculations become difficult
for third—- or higher— rank theories, so in the absence of strong
motivations we have 1imited our calculations to scalar, vector and
second-rank tensor theories. The scalar theory of Eq.t37) predicts
no precession. The two vector theories of Eq.(38) give the same
resul t; namely, 1/é of the value predicted by general relativity.
The four second-rank tensor theories of Egq.(39> predict precessions
that differ from that of general relativity by factors of 273, 151}

-8/3 §§9 -2/3 respectively. A particular lFnear combination of g
and gy, is also of interest. This is

K v

. L . -':'.
oy, 1or? = 4 E rsmbgldh 4¢ab’ab)(b b, -7 b b2 (56

b=a H

This is the linearized theory of gravitation obtained from the

general theory of relativity by writing

= 1 >
Ay ﬂ#? + guy{ gr, (S37a

and supposing
¢ < )
[ay,C1or] | (57b

This theory predicts a precession greater than that predicted by
general relativity by a factor of 4/3.

According to Eq.(34) the scalar and second-rank tensor theories
(but not the vector theories) predict a gravitational time dilation.

For a body at rest in a gravitational field ~:Iaut1 = 1 and dai =
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(27
for 1 = 1,2,3. For Whitehead’s theory gzq = 26M/r, and

da = dt¢1 + 26M/r)i7 % (58)

This also agrees with the predictions of general relativity and
with observations. It has also been shown that Whitehead’s theory
predicts a bending of a light ray in a gravitational field that
agrees with general relativity and with observations., The three
classical test of general relativity are the precession of planetary
orbits, gravitational time dilation and the bending of light rays
in a gravitational field. Whitehead’s theory and general relativity
agree with one another and with observations. It was not until 1971
that it was shown that Whitehead’s theory predicted tides on the
earth with a 12=hour sidereal period due to the mass of our galaxy
that would have an amplitude that was 200 times greater than the
upper limit of sensitive gravimeter measurements. By this time the
philosophical and aesthetic appeal of general relativity together
with its essentially perfect agreement with, observations had won
for it almost universal acceptance as the correct theory of grav-

i tation.



CHAPTER 10

THE BENERAL THEORY OF RELATIVITY

"DERIVATION" OF EINSTEIN’S EQUATIONS

The general theory of relativity formulated by Albert Einstein
in 1?13 is based on two general principles, The Principle of General
Covariance and the Principle of Equivalence. The first aof these is
the requirement that the Taws of physics should be independent of
the reference system. It should be possible to write the laws of
ph¥sics in a form that is valid in all spacetime coordinate systems
including accelerated cnes. This requirement is met by writing the
lawe of physics as tensor equations. Under a transformation of co-
ordinates all terms in an equation transform in the same way, so
i ¥ the equation is satisfied in one :ucrdiHate system it is satis-
fied in all., We accomplished this in Chapter 8 by writing the egqua-
tions of motion for a particle in an electromagnetic field as

i
e L CIR WAL L. SR gy TS B FTCdx /dty <D

and Maxwell“s equations as

Fﬂy;v e 2 g ppn (2a)

Frvin * Fuagu * Fapgy = 0 (2b)

The Principle of Equivalence is suggested by the experimental
determination of the equivalence of inertial and gravitational mass.
The gravitational force on a body is proportional to a property of
the body that we call the gravitational mass. In Newton‘s second
law of motion the force is equated to the acceleration of the body

multiplied by a property of the body that we call the inertial mass.
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Experiments have shown that these two masses are proportional to

2 very high degree of accuracy regardless of the size or composition
of the body. With a proper choice of unite the coefficient of pro-
portionality can be set equal to unity and then the two masses are
equal. all bodies fall in precisely the same way in a gravitational
tield since the mass cancels from the two sides of the equations

of motion. Inertial forces such as centrifugal, Coriolis and other
"fictitious" forces that appear in the equations of motion due to

& choice of an accelerated coordinate svstem share with gravi ta-
tional force the property of being pﬁahnFtiana1 to mass. The inert-
ral forces appear in Eg.(!) in the term containing I'. They may be
"transformed awar" by makKing a transformation of coordinates to an

inertial system with a constant metric tensor Oy This suaqgest
L
that gravitational forces may also be included in the M=term, and

then we may regard inertial and gravitational forces as esquivalent,
at least locally. We can always choose a coordinate system in which
the '—term vanishes in a sufficiently smal]l region about a space-—

time point p. To show this let us recall the transformation formula
for I :

’ L.
”.ﬂ' la 1"”. P" £ ““ . I_-l..r ':3.:'
FEL=F VHPJK:HJK :Hx s 4

We shall choose a new set of coordinates given in terms of the old

S b LI 4 A K
SR Lo o ¢x =i (4)

where the subscript p denotes evaluation at the Sspacetime point p.
Calculating the derivatives and substituting into Eq.(3) gives

crup;F;}p = 0. A coordinate system in which " vanishes at a point
is said to be locally—inertial. s

II

I

s
We may formulate the WeaK Principle of Equivalence as the state-
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ment that "at every spacetime point p in an arbitrary gravitational
tield it is possible to choose a locally—inertial coordinate system
such that, within a sufficiently small region about p, the 1laws of
motion of freely falling particles take the same form as in unaccel-
erated Cartesian coordinate systems”. The Strong Principle of Equiva-
lence goes further and replaces the words "laws of motion of freely
falling particles” with ”aL]_uf the laws of physics". This

implies that tHE special theory of Pefﬁtiuity is appliicable in any
sufficiently small space time region. In order to write the 1aws

of physics in a form that is valid in the presence of a gravitation-

al field, one writes them in the form that is valid in the absence
—-A—the sbeence of & gravitational field but in generally covariant :
form. Thus, Egs.(1l} and {(2) express the laws of particle mechanics

and electrodynamics in the absence or in the presence of a gravitation-
al field.

Let us see qualitatively what some of the implications of the
Principle of Equivalence are by comparing the observations of phys-
ical phenomena in two laboratories, one of which is at rest in a
uniform gravitational field with gﬁauitatinha1 acceleration g, and
the other in an elevator that is accelerated upward with accelera-

tion g. This is depicted in Fig.l.

Tl
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f?ﬁfJf;;ﬁffFfﬂff }}fx'

Fig.l

I+ a ball of mass m was dropped in each laboratory, an observer in

¢ach would observe its apparent accelleration toward the floor with
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acceleration g. The first observer would interpret this as being

due to a force mg exerted on the particle by the gravitational

field, while the second observer would say that his ball remained
stationary while the floor accelerated toward it. Both observers

see the same acceleration g according to the Weak Frinciple of
Equivalence. If gravitational and inertial masses were not equal,

the observer in the eleuatqr_wﬁuid see the same acceleration for

21l bodies druﬁped in his laboratory, but the observer in the grawv-
ttational field would see different accelerations depending on the
size or composition of the bodies. A ray of light moving in a straight
line would appear to move in a curved path to the observer in the
elevator because of the acceleration of the laboratory floor toward
the path. According to the Strong Principle of Equivalence, the
observer in the gravitational field must also observe a curved path
for a2 light ray in his laboratory, Thuajthe Strong Principle of e
Equivalence allows us to infer the bending of the path of a light

ray in a gravitational field. Next, consider an experiment in each
laboratory in which there is a source of light near the floor that

is observed with a spectrometer near the ce}iing. The observer in

the elevator would find the wavelength of the light to be shifted
toward the red, because, during the time t = h/c it took for the
light to traverse the distance h between floor and ceiling, the spec-
trometer had increased its velocity by u = gt =gh/c. AS a result

there is a Coppler shift of 4dAv/v = us/c = ghfczl According to the

Strong Principle of Equivalence the observer in the gravitational
field should see the same red shift which can be written as dv/V
= 49/cZ where 46 = gh is the difference in gravitational potential
between floor and ceiling. Thus we infer the gravitational red shift.
Neither observer would be able to infer from measurements made
in hie laboratory whether he was in a gravitational field or in an
accelerated elevator. However, a nonuniform gravitational field
could be distinguished from an accelerated system. For instance,
in a laboratory on the surface of the garth, if two balls were
dropped simultaneously, they would approach esach other as they fel]l
to the floor because they would fall toward the center of the earth.
True gravitational fields are distinguished from Fictitious gravita-

tional fields due to accelerated reference s¥stems by our inability
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to abolish them everwvwherse by a coordinate ftransformation; they rcan
onl» be abolished over a sufficiently small spacetime region. Math-
ematically, this means that we cannot find & transformation to a
coordinate srstem with a constant metric tensor, and this in turn

implies that the curvature tensor RHFEE i nonvanishing. Gravi-
tation is to be explained by the curvature of spacetime

Ve
: . &

There remains the problem of discovering the equations that
relate the spacetime curvature to the distribution of mass momentum e
and energy. We shall be guided by MNewton‘e theory of gravitation,
kie write the nonrelativistic equations of motion for a particle
im a gravitational field as

mdz:{],’dtz T (S =

where ¢ is the gravitational potential which is related to the mass

density F by

T% 0 = ancp ‘ el

We know that these equations give an accurate discription of grav-
itation for sufficiently small velocities and weak gravitational
fields. For small velocities we may neglect the space-like compon-
ents of the particles d4-velocity and set the time-1ike component

equal to c in the F-term of Eg.(!} which becomes

dexi dt2 + Mo <2 = 0 (?) i

Comparing this with Eq.(5) we identify

-
L S (2

For almost flat spacetime and time—independent gravitational field

2 1/2 ﬂiﬁﬁ - 3
111 °s0,0 * 9s0,0 ~ 9 00,

= 172 ggq (%)
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Using this in Eq.¢(8) and integrating we obtain
= + 2 : C10
g = 1 P/ C

When this Is used in Eg.(&4) we obtain

<

vﬂgm = (BUG/c P (11

We wish to generalize this to a tensor equation. The mass dens| ty

P is not a scalar but is contained in the energy momentum tensor

z 2
Tyy = (P + PU/C” + P/chuyu, — g, P | ¢12a)
and so
TDU i R FUH:E:‘CEL" J:'I:E ¢128)

We use this to rewrite Eq.(11) as

2 _ 4
7 Spp = ¢8WG/c VT (13>

Egq.(13> suggest that the field squations of general relativity

that we are searching for have the form
G = - {(8TG/ 2
iy Sl (14)

where Gy, is a second rank tensor with the properties:

(B Linear in th second derivatives of Sy .
Lo B8 A T L 0
iV ¥

(D> GGD - f U:bﬂﬂ for weak fields.
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Qur first guese might be that G#V is the generalization of
: W O, obtained by replacing the derivatives in the D’Alembert)an
by covariant derivatives. However, this will not work since the

ctovariant derivative of the metric tensor vanishes; EHF would be
icdentical ¥y zero.

The curvature tensor Hﬂﬁu? ‘s linear in the second derivatives

of gy, but it cannot be a candidate since it is of fourth rank.
o

Contracting it gives the Riecci tensor Rg, = R Bey+ This is a promis-

ing candidate since it is second rank, symmetric and linear in the

second derivatives of g,,. To investigate whether property (C) is
satisfied we shall make use of the Bianchi identities

EN _ p8
it T Ry * Royg,, = 0 (15)

which we shall now prove., 1t will be recalled that the curvature

tensor has the +form
R =3l 2x -3l + T - rr t1a>

In a locally—inertial coordinate system the ’s vanish, so

RLFW = ﬁ;fﬁxﬂj [arlﬂvf;xk - erpgfﬁ‘ﬁtpj {173
Calculating the other two terms in Eq.¢(15) we find that all
terms cancel, so the Bianchi identities are satisfied in & locally
—inertial system. But EqQ.(15) iz a tensor equation, so if it is
aafisfied In one coordinate system, it is satisfied in®all. This
completes the proof.
Now, we contract Eq.(15) by setting K = » and obtain

.
- R -
Bvin * Rounyin * Rumgy = 0 (18)



We have used the antisymmetry of R in the jlast pair of indices.
Next, we multiply by gFV¥ and contract

to ocbtain

- R.q zﬂlﬂil =0 (19)

Finally, we multiply br @°" snd contract to obtain

(RPN _ o gﬁ“E},ﬂ e (20 S
1 o . |
We see that RCM 1§ not & satisfactory choice, since EG“_ﬂ %= 0 hut

1

that
L
¥R RN o jmnt (217

does satisfy requirements (A), (B) and (C),

e
It remains to be shown that requirement (D) is also satisfied.
This will be shown in the next section, but in anticipation of this
demonstration we write the Einstein field Equatianﬁ as
By = R, - 1/2 R ==(BRXG/c T
v Ry Suy Sy (22> e g

Note that contraction gives
Y 4
R =R = (8u6/c :T“v = (81G/c T (23)

s0 the field egquations can also be wrijitten as

4 -
Pry ==(8n6sc 2¢Ty, - 12 g, (24) e
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lde shall assume that the metric tensar Spy differs very
little from the Lorentz metric tensor ﬁuw and write
=TSV :'“Hy + huv ' Ihuvr LA | GESD
In calculating the connection coefficients Fﬁv and Ricci tensor
EMr we =hall retain only terms that are iinear in hHP' lWe find
P W I
e = 7% 550 gk + 9 - il
IRV HP/QH .:-'"ILIP/,:,}: -;;Ihuv,r;:;lx ] {243 )
— ¥ Pl
Ry _?ripf:"x A =
Ky
= 1/2 e BISE R AR A .

We can use our freedom to make coordinate transformations to

eliminate unwanted terms
formation
LR S L, S P

in Eq.(24b>.

Let us make a coordinate traps-—

where %H{xj s of order hy, A brief calculation gives

- ¥
Apoye = hyy = 28,/0x

Let us choose %“(x) =g that h

;]?'1": =

whera

27
_ 1
Uy obeys
{2%a)
L29b)
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To prove that this

nate system o, ¢V
Eq.(27) and

i€ possible, let us suppose that in some coordi-

* 0. Then we makKe the coordinate transformation of
use Egq.(23) to calculate

v o
v Y -
JOIEEEE-N R T ey
and =0
o’ 1 T
¥ P -
S b (RN e S ¢31)

We need only choose 5, to satisfy the inhomogenous D’Alaembert
equation

4 V
ﬂ E‘j\_ = ;';.rq'l 5

(32

and we kKnow how to solwve this equation.

Now, we use Eq.(29)

in EqQ.{(24b) and find that the second term
is cancelled by the third and fourth terms and we are left wjth

Ruyy = 172 by (33)

When Eq.(¢33)
gravitational

is used in Eq.{24) we obtain the

linearized
trelg squations

=

Dby = = (16m6/e™ (T, - 120 T (34>
Mo ,

T = pPc? + PU = 3P =~ pc2 ~ e (355
lWhen this is used in Egq.{(34) we mﬁtain

O hgg = - (8XG/c2IP e

which agrees with Eq.C11) for static fields. Thus the linearized

tfield equations agree with MNewton‘s theory in this approximation.
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Eq.(24) is the inhomogenous D &lembert equation. Its solution

| =
e =
+ f S S .
Bty S Lo T i T (372
) X - X
where
Sy ™ Tyy = 142 0T (378)
and
-5
t, =t - Ix ~ %"!/¢c (37¢e)

is the retarded time.
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SRAVITATIONAL WAVES

In the absence of sources (that 15y, the esnergy-momentum tensor
vanishes) the departure of the metric tensor from the Lorepntz metric
tensor obers the equations

Ry = 172 27hy,, = 0 (38a)

¥ ¥ ¥ 3
M = Zuih - {,2 g hf ] :

These equations have solutions that represent plane waves
propogating with the speed of light; namely

1Kx * L=ikx

hT-'-'b" = E;.L],..-' & +_E]-l'|..-" {329

where kP - C o, kY and Kkx = kuxp = Wt/c - Ke%x. The symmetric tensor

€4y 18 called the peolarization tensor. When Eq.(39) is substituted
inte Eqs.138), we find :

il
kyk = wEsc2 - k2 L g (40a)

W B
68 e =B L ETD (40b)
The relation Cny = €yop reduces the number of independent com-

ponents to 10. For a given propagation vector E, the +four equations
of Eg.{40b) reduce the number of independent components to 10 - 4 = &,

We are still free to make coordinate transt+ormations of the form

of Eg.(27). According to Eg.(31), if Eh satisfies Eﬁgl = 0, then

]
EqQ.(38b) will continue to be satisfied. Such a solution is

» | .
Sptx) = igy o T ig F eTIKx (413

Substituting this into Eq.(28) we find that the new polarization

tensors are
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Since there are four choices for Spy there must be only 10 - 4 — 4 = 2
phrsically significant components of the polarization tensor.

Problem 1.
(a) Consider a gravitational wave propagating in the z-direction

so that K, = (K,0,0,-K>. Use Eq.(40b) to express £g; and €ao
in terms of the remaining & components, Then choose Sy so that the
polarization tensor takes the form

O 0 0 Qi
E].E _'::.'I-DI

]

I -
1 O 0 a I
(b)Y Consider a rotation about the z-axis through an angle &. The

polarization tensor transforms as

X B

E€popyr = Rp#'va Emﬁ (44>

where the components of the Lorentz transformation are

cos 9

A
i
Ty
el
]
A
hJ
|

Ein 9

Al
ey
L
)
il
i
A
—
|

iy
I
0

)
i

and all others vanich. Show that

&
£2i9 o -
€y = (45> -
where
E: = Eli + iET.E (45b)
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In general, when the polarization P of a plane wave is transformed

into

pr = Eihﬁ = (d&)

by a rotation through an angle & about the direction of prop-

agation, it is said to have helicity h. We see that gravitational

waves have only two physically significant polarizations, and that
these have helicity * 2.
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ACTION PRINCIPLES

One of the most beautiful results of theoretical physics is
that all of the laws of classical physics may be derived +rom an
action principle. That is, the fields and particle trajectories
must evolve in such a way that a certain function, the action, is
an exftremum. MNot oniy does the action lead to the equations of
motion of particies and fields, but an analysis of its | ivariances
leads {0 conservation laws. In addition the action provides the most
elegant transition between classical and quantum phrsics through
the use of the Feynman path integral.

Let us review the procedure. Suppose we are dealing with a set
of fields 92(x) where the index a = 1,2,3,~——=N labels +he field,
and we are given a function L, called the Lagrangian density, of

the ¢2“s and their spacetime derivatives. We define the action
S to be

S = | d9%y Lima,%ﬂﬁa} (47)

The integration is over a certain wolume of spacetime with fixed
boundaries. When the set of fields 93(x) is specified, then 5 is
3 number. We say that 5 is & functional of o3 Now, suppose we
change ¢3(x> by an infinitesimal amount at each spacetime point;
that is 9#3(x) > ¢3(x) + £0%(x), Then S + § + £S5 where

£S = [d9x{(2J L/ o3y gpa cau;%@a} ;%4:-&} (48)

(Summation over the repeated index a2 is understood). lWe may in=

terchange the operations ¢ and 2# in the last term and integrate
by parts to obtain

£8 = (d‘*x{&u; pd DL oMePr380% + surface terms (49 KT

We shall assume that $0°(x) vanishes on the boundaries of *he volume

of integration, so the surface terms vanish., We call
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S8/5034(x) = D Lr/ped - i LD grlnls e

the functional derivative of S with respect to the +ield ¢3(x).,
If 5 iz to be an extremum (either & minimum or a maximum), $£5 must

vanish to first order in the variations in the fields. Setting the
functional derivatives equal to zero in EqQ.(S0) give the field
equations, called the Eu!er;Lagrange equations, for the sy¥stem.

The trick is, given the esquations of motion, to find the action
5 whose Euler-Lagrange equations are those equations of motion.

In Chap.8 we found an action, Egq.(7%), that vielded Maxwell s
equations for the electromagnetic field and the equations of motion
for charged particles. In thig section we shall add a term to this
action that will vield the gravitational fieid equations in addition.
One of the most fruitful uses of action principles is in the in-
vention of new theories. Instead of trving to guess new squations

of motion, one tries to guess a new action S.

In order for S to be an invariant, L must be a scalar density
of the form di-g>A{¢a,€¥¢a> where A is a scalar. Then the combina-
tion J(-g>d%x is an invariant volume element.

What shall we choose for the scalar A in the action for the
gravitational field? The fields of interest are the components of

the metric tensor Ouy- The scalar that immediately comes to mind
is the curvature scalar R. However, a difficulty is apparent. R

contains not only Suy and its first derivatives but its second der-
ivatives as well. Fortunately this difficulty is not fatal. After

some tedious algebra using the formulas

Moy = CL/4(=g)) Pre (g} (51a)

9“‘"",”‘ = = (1/4¢=gr) Iy (4 =g) " {31k
LK — LK

xn I 9 Iy B (S1e>

we can show that

J(=g) R = d,, (J(-q) WV, J(=g) G (52a)
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where
¥ ¥ Lk
WY = gvVpa _ rv
v B LK (52b?
G = LI":,: . "I___ = « e
9 YT rmr"m; {52¢c>
Py |
The first term in Eq.(52a) gives surface terms when integrated.
Thus
(" o
d9%x Ji=g) R = 1d4x A¢=-g) G + surface terms (53a)
J
and so
rﬂ
4 .
19% J(-g> R = 4 d¥% Je-gd 6 (53b)
4
since the variation of the surface terms vanishes. R is equivalent
to G in a vartational principle. In fact, we can always add a di-
vergence to a Lagrangian density without changing the Euler-Lagrange
equations, since the divergence can be integrated to give sur<face
terms that contribute nothing. I :
ﬁl""':.--___
lWe now define the grauitaticn;l action as
(
3 a4
Sg = ¢(c S1&TG) H d7x J(-g) R (S4a
)
Its variation is
§S_ = (c>/166) | d%y (84d¢-g) R + J(=-g) R R
9 ) py®g
+ Ji-g) gtV
4{-9) g SRy
" [ v
e®/1416) | oty Je-gd Ry, - 172 g, RI5g
L l-l'i-i" - "’,ﬂ'/.-'
S5 (S4b> s
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where we haue used R = QFFHHF and

-l"'l

2d(—g) = = 1/2 J(-gJ =ITeY ggu ¢S4cH

The term in the integrand containing EEHV can be written as

a divergence and discarded, as we shall now show. We 4ind
SRy = SMh. - srt L oep? A AR
5N Hy SNV * Tyt pn
- ¢FM 7 !

This may be written as’

M
= = =2
£ "y (& HL};F Y HP}jL (5&0

This relation is known as the Palatini identity. In writing

this eguation we have treated &I as i¥ it were a tensor., Ic this
Justified? The answer is affirmative, for consider the transforma-
tion formula for M, Eq.(3). In taking the difference of two s

to obtain &, the inhomogenous term cancels, so & transforms as

& tensor. Although I is not a tensor &I is.

Mow we may write

LY

iy >
gtV = [{EM™ =
b TRE TRV I
ol - T Y
= g il
Y SN
= [gﬂ?; _ ﬂlgrv
hl e wid sy

¥ ' 1
EUF;F = (1/4C-g)) DpldC—g) SV 7 (57 -

L ;_,_--"'"-.-
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The justification for taKing QHF inside the parentheses in the
second line is that the covariant derivatives of gtV

vanish, so
gtV

behaves as a constant for covariant derivations. The uectar
Wois the quantity in square brackets in the third line., In the
final step we have used the formula for the divergence of a vector.
NMow, putting Eq.{S57) inte (54b} we integrate to obtain surface

terms that uanish,'and we +ind for the functional derivative

[P
fa

£ _ﬁ-. 3 -

The came result can be obtained frem another variational prin=-

ciple Known as the Palatini variational orinciple, We retain

Eq.(54a) for the action, but now we regard the 10 Suy s and 40 rtyrﬁ
4s independent variables. The usual relation between >

Ky and gpy
and its derivatives is not assumed to hold. As will be seen, it

follows from the variational principle. The variation of the action

P again given by Eq.(54b) with the &’s contained

in §Ry,, according
to Eq.¢(S&) ., Now

L

X - A > 1 g
S = My, F pdly, - ruvgr{;h - rxvgrjﬁn (40 gy
with a similar equation for the second term in Eq.{S&), We integrate

the terms containing derivatives by parts transfering the deriva-
tives to ghV and giving surface terms that vanish, Then, rearranging
terms we find

$s, = (31616 | a4y (- (R hy

wy = 1.2 Q“FR}EQ

- Al A my
S T G TN ) SR

We have used the usual notation for covariant derivatives of the

metric tensor. We obtain EQ.(58) again and in addition the 40
functional derivatives
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&8 = S1 AT =

where

ry By By W
7 i T i rmg + F mgm (&2h)

Setting these functional derivatives equal to Z2ero, we mar solve to

obtain the usual expression for the connection coefficients

I WG
rFF = 1/2 g E%Hgvg + ??gﬂﬁ - ;fgﬂv] (53

Setting Eq.(58) equal to zero we obtain the gravitational
field equations for the vacuum; that is, Eq.(22) with the right
hand side equal toc zero., To obtain the right hand side from a vap-
lational principle, we must add to the gravitational action an

action for matter and other fields which we shall denote by S
e write

ml

I S

S = 1/¢ (dﬂx =gy Acel, T el gHV SRy, (44)

In general the integrand will depend not only on the fields ¢}

and their derivatives but also on the metric tensor and 1 ts deriva-

tives. Yarying only the metric tensor and doing the usual integra-

tion by parts, we obtain

-
ESm = {/a g dqx {'DEAE—gbhf;g“y - Eg{dﬁ—g}ﬁﬂggﬁg“vj}sgup

I

where we have defined the energr—-momentum tensor Tuy by

Ky
Tuy = 2e/4¢-g> $5./%q

= 2/d(-q) [ 3 f4<—gihf_§/gw ~ DAR-A/D 2,0 ) (66)
2
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i}

We may now writse 5 = qa * 5m and combine Egs.{S8) and (44) to obtain

£5/5g"Y = <C34ﬂ-glfléﬁ63 Lol = daZoiga R4 {BﬂGIcq} THFJ (&7

Equating this to zero gives the gravitational €jeld equations, Eg.(22)

Froblem 2.

For a single scalar field ¢ take
A = 1r2 ghv 02,0 = V(o)
(a} Show that the Euier-Lagrange equations are

¢!l;h -9V = 0

(b} Show that the energy-momentum tensor is

o e
— — :

= .I_.-.--.--" -.:x M -
Ty =@+ v A (0,80, # - £ 2, 0:42%F) 1y,

Froblem 3
For the electromagnetic field

sl %P EC
A= = (17160 FooF o™ o

({see Eg.(79) of Chap 8). (a) Use Eg.{&44) to show that the eEnergy-—

momen tum tenscor is

o]
Tuy = (1780 (R F o+ 1/4 FEFFEE]

(b). Rewrite A as

A= - Fof 2
1781 ¢ ﬂﬁm’ﬁ A

and treat FaP a4 A, a5 independent variables in a variational
principle of the Palatini tvpe. Show that



_ r ad =
85/8A, = (J{-Q)/4M) F .5

S/LFXP ool - -
S (d<-g) /8N [F_g Ao p Ag g ]

We now add the gravitational action to the action of Eq.(79)
of Chap. 2 to obtain

M by =
SEE‘. " ﬁm! g :' E

I

z ' LB
m,c Sda - 5 e_/C J Ay & da

.
- (1/16Tc) Sd4x 1-g) Fy FY
.

* ﬂfg!léﬁﬁ} Jd4x J{=-g) R -

-EF' + SF"F + S_F + SQ (&8)

This is the total action for a collection of charged particles,
an electromagnetic field and a gravitational field. 1t was shown

in Chap.8 that £S/%a" = 0 gives the particle equations of motion,

Eq.{1) of this Chapter, and that EEFEQE gives the inhomogenous
Maxwell’s equations, Eq.(2a). The homogenous Maxwell’s equations
Eq.<2b),

follow from the definition of Fqﬁ in terms of Az Finally;,
£5/780lhY =

0 gives the gravitational field equations,
= = dyer () (p2
Buy = Ryy - 1/2 guyR = —(8%G/c B i s

The left side of the equation came from Eg.<(S58). The ener gy—momentum

tensor for the electromagnetic field came from $EffigHF according

to Problem 3. The energy-momentum tensor for the particles comes
from 52 fsguﬂﬁﬂ;uia the calculation that follows. Write .
P

_ -3 EETe 1/2
Sp =-Zmc ({Q dayda,,> (70a)

2 .-EF-L'I.-"
QEP = = § mc /2 daayd,*9 (70b
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where we have ygsed

I,J.';,-l' - -'1...1'"‘2 ' i
‘9" "da, da,,> day da,, = 3y &,,da (?0e)

We may put this into the form of Eg.(45) by multipliying by a 4-

Jdimensional Dirac delta-function and integrating over spacetime to
obtain

5

s E !I'| ‘:1 4 [ 3 FL?
EEP = - E Mt 72 \V\d uda & ,:Hcrr a5 apay £g L
Comparing this with Eq.¢(45) we identify
cpJ 3(
e Y o , 4 5 7% -1/2
USSR T L (72)

4

This variational principle gives in the very concise form,

€5 = 0, the laws of mechanics, electrodynamics and gravitation.



/0 -24

CONSERVATION OF ENERGY-MOMENTUM

Let us consider the action of Eq.(48) with the gravitational
action omitted; that is

S=8 + 5,5 + 5 e

We writte its variation as

{

£8 = )ddx (ss/8a8 €3 + sss8A; tay ¢ tsssg ” oMYy (7a)

Requiring the functional derivatives with respect to a* and Py
vanish gives the equations of motion of particles and Maxwell”s

equations as has been shown. We are left with
[ —

— o 3 By &
$S 1#258 d4x JC-g> Ty, Sg (75D

bl

where Eq.{(44> has been used. We cannot argue that £S5 should vanish
for arbitrary variations of gV, for the gravitational action has
been omitted. However, £35 should vanish for variations of gtV that
are due to coordinate transformations, for S should be invariant

to the choice of the coordinate system. Therefore, let us consider

the infinitesimal coordinate transformation

L N T Lt (7&)

where € is an infinitesimal constant and £*¢x) is arbitrary. The
transformation formula for gtV g

gt Vixy = ?xxuj%,xpﬁgﬁﬁix}

= QHPfK} = Eg&ﬂ:ﬂﬁ” + EQHF EV (77 B

P

~lso
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g Vixia = TV x5y = TV o+ egr MY (7l

kie define the variation of the metprjc tensor as

Sgpv = gpgvgfx} = g“yixb = - Efiliaguy - gkylﬁﬁﬁ - QHLQA%F}

= - ¢ [ﬁ}ﬁg?]““ (79

In the last step we have recognized the Lie derivative of the metric

tensor. NMote that we have taken the difference af g”’vf and g“F at

the same space time point. The arguments of all of the factors in
the integrand of Eq.(735) are variables of integration and must be
the same. We substitute Eq.(?%) into (75 and integrate by parts

the two terms containg derivatives of &, We €ind

B
e B 4 _ _ B VA &F ., o
g ¢/c Sd x d8-g) T[1/48-g) Jy CdC=g) Ty,g' > *lr2 Tagdea 18
= - ¢/c gdqx e T, 8 e
: :

We see that the requirement that € be invariant under infinites-

imal coordinate transformations (that sy, §8 = 0 for arbitrary &
leads to

which we recognize as the conssrvation of energr—momentum equation
first encountered in Chap.8, Eq.(?5b). Al though we have done this
for a system of particles and the electromagnetic field, it ie cleapr
that we could have included the action for other fields in S. The
@quations of motion and the field equations would cause all terms
tu-drup out except for Eg.{(75), and then EQ.(81) would follow. We

have arrived at a very general result: the conservation of enerqgy

momentum follows from the requirement of the invariance of the

action under general coordinate transformations.
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lkle ma» use the same argument for the gravitational action
whose variation we found to be

oy

58 = (eI 14m8)  \d¥x dC-9) Ry, - 1/2 gy R) S (82

A repetition of the calculation that led to Eg.¢(81) gives

Ryy = 172 gyyR),, = 0 (83

which are the contracted Bianchi identities of Eq.(20). Thus, these
tdentities are a consequence of the invariance of the gravitational

action under general coordinate transformations.
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Chapter 11

SOLUTIONS OF THE GRAVITATIONAL FIFLD EQUATIONS

The gravitational field equations

Buy = Ryy = 1/2 gy R = - ca-mra.fc“}Tw i
are a set of tem coupled nonlinear partial differential equations.
Inly» a small number of exact solutions are Knewn. Generally, in
tooking for solutions one assumes =& special form for the metric
tensor, dictated by the symmetry of the ph¥sical problem. This form
will contain one or more unknown functicns. Then Eq.(1) reduces tg
a set of di++erentiél equations for these unknown functions.

A considerable amount of labor is involved Jjust in writing
down the differential equations once the form of the metric tensor
has been chosen. One must calculate the 40 1"’3'*~uP in terms of gy,
and its derivatives. Then these are used in the calculation of R
and R. It is worthwhile to employ all tricks that simplify this

wy

calculation. In Chapter & we introduced some of these tricks and
used them to calculate curvature and Einstein tensars of interest.
In this chapter we will use another set of tricks.

The Ricci tencor is cbtained by contracting the curvature tensor;

thus
[ 4
REF = R BorV
=2 [0 d X T i n (a4
QFFEE _-jq_rlﬁp ¥ rﬁﬂ:rp'ﬂ - rﬁ‘praq'l (2a)

We may use

s (1/4¢=9)2 9 4¢-Q) (2b)



to write this in the form
, ot
Ray =5:.¢5’:e.—* Lnd{=g) = (1/4¢=g)) 2 (g2l g 0

T pa B
Mol v (2¢)

The last term may be written as

o
SN A (2d>

2 A U
where FE is the matrix with elements rﬁa' Mote that as usual the
superscript denotes the row and the subscript denotes the column,

The first subscript labels the matrix,

The labor involved in calculating the connection coefficiend
can be reduced by writing the Lagrangian for a free particlie of

unit mass as

MLV

Then, comparing the equations of motion

-

ardt GLoX Y -aLmxt = 0 1(3:::-
wi th
@ 4 st =0 (3c)
one easily finds rﬁp. These methods will be used in the followin

sections.
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STATIC CENTRALLY SYMMETRIC SOLUTIONS

By static and centrally symmetric we mean that the metric must
be independent of time and depend only on the rotational invariants

Id?:f, (%12 and #.4%. Therefore, it must have the form

dTE = guvd:{uﬂiﬁ{y
SUE e e Beplicilagy 2 pergnd sditne - FaaT e
= F(r)dt2 =2E¢(ridtdr - D(r>r24r2

- C(rildre + r2(d4e2 +sinfeded)r] (4)

We may eliminate the term contazining dtdr by defining x new
time coordinate by :

b =t + £(p) (5
and choosing Ff’ = rE(r). We find the metric becomes
dT2 = F(r)dt2 - G(r)>dr2 ~C(r)r2(do2 + gin26de2) ] (&)

e have dropped the prime on t7 and defined a new function Gip) =
=

Cir) + pr2D{r> + 2rgdir)> - +f§kr}. Mext we define a new radiazl £f$f
variable Fﬁ Ee——
r‘2 = C¢pdInl ]

and find that the metric takes the form

dT2 = gV(Prd 42 _ A(PI g2 L W2y 462 v oin26do? (8) e
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lWe have dropped the prime on r* and collected the radixi functions
into the exponential functions e¥il? ang elipj; their vaiues in
terms of the functions F, E, D and C is of no consegquence .,

The covariant components of the metric tensor are identified

a5

»nir) |
Oy = ! -2 Dﬂ 0 ; (%)
b0 0 - 0 |
L i) 0 0 -rZ2sin<s!
The contravariant components are
eV 1 0 0 |
P P 0 —e™™ g i :
oy
amn/= ! 0 -r~2 g ! {%by
I D 0 0 -r 2¢in" 20!
The square root of the determinant is )
J(~g) = rlgineetViri/2 (9e)

We now construct the Lagrangian, Egq.{(3a), and write the equa-

tions of motion, Eq.{(3b). As an example, for K = 1 we +ind
d/dT(-eViy - 1,2 vrevt? 4 102 nrenp?
+ r(8% + sin2e $2) = g (10a)

The prime denotes a derivative with respect to r, This may be re-

written as
r ¢ 172 008y g VAR L a2
i

2
- a~Arsin 8% = [ {10b3

Comparing this with Eq.(3c) for e« = 1, we identity



Pl o

g g Al SR

—h i N R
k)
™ |33 - g Psince (11>

1]

The remaining I'"s may be obtainsd from the other three equations

oFf motion.

The

i 0
R T
: 0
0

8 Tl o

1
]

¥

se may be written as matrices as fallows.

v'/s2 0 o

Ba o O 0 0
0 ] 0 i

0 0 o

2 0 ( o
A2 0 0 i

0 1/m (1

0 0 1/r!

(122

0 d o |

5. ok R 0 |

1-r g i

0 cotel

0 0 o

0 0 -e_Lrainze:

0 0 -sing&cose |

1/ coté o !

We now have all that is needed for the calculation of EEP
using Eg.(22,

e A

a ~HAr

53 =
3

Then EH may be calculated. The results are:
l’frz - XS] - IH’FE (13a)
1/r2 & yospl - 12 (13}

e ALY /2 +V* 2,8 - 3t/ 4 VPSR = 2V /4] €13e)
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These results will now be applied.

(a) Schwarzschild Solution
We set the right hand side of Eq.¢1) equal to zerc and look

for a vacuum solution, Subtﬁacting.Eq.{IEa} from (13B) gives
BT SV if}fr = 0 (14a)
from which
¥ + W = constant (14b)
By inspection of Eq.¢8) it is seen that if a constant is added to

vy, the constant may be absorbed by a redefinition of t. There

Is no loss of generality by taking the constant in Eq.(14b) equal

to zero, and so X = - v, Defining f¢r) = e™ Eq.(13a)
takes the form

df/dr + f/r = 1 /1 (13a>
which has the solution

f =1 + A = 2=\ ¢ 15b2

where A is a constant of integration. It is easily rhecked that
Eq.<(13g) i§_equa1 to zero.lt will be convenient to define A =

- 26M/c? =-r_ and write EqQ.t8) as B
s 4 _
E_ E_ ) =
aTe = (1- r_/r)dt 1 SIS far2 _ re(del
+ sin26d¢2} (1&)
This is known as the Schwarzschild metric; re is called the =
Schwarzschild radius. As will be seen in theSnext section, M

may be interpreted as the mass of a particle located at r = 0 that is
the source of the gravitational field described by Egq.(14),
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(b) Reissner—-Nordstrom Solution

ke may modify the Schwarzschild solution by assuming that the
particle af the origin carries an electric charge q. Then the non-
wanishing eliements of the electromagnetic energr-momentum tensor
areg

z 3

— ek

0
0

Two components of Eq.(1) are

O _ .=,
Gg = © _LlfrE - x"/r] - t/r2 = - qufc4r4 (18a2
Gl = e=rpy pn2 . = Z o
i O W rre =na angcqpq (135)
Once again we find »x = = ¥. The solution is now easily found to be
e~ = ¢V =1 - P qufcqrz (19)

The metric
2 .
S B - Y L S A - 2R XSS WY
- r2¢de? + sinlede2) (20>

IS Known as the Reissner—-Mordstrom metric.

(c) Interior of a Star

-

For the energy-momentum tensor we shall take

2 2
- Tpy = P+ PUsCT * PIEThuy, « gy P (21a)
wi th

Un = ug = uy =0 (21b)
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This describes a flyid at rest, Since

*Vupu, = (21¢)

Wix  The

we must take u, = ce . nonvanishing components of the enerqgy

-momentum ftensor are:

Tg = FEE + PU = &
Iz 3
T, 2 3% & T3 e

Two components of Eq.{1) are

e M1sr2 - a/el = 1/r2 = —gueescd (22a)

e [1/r2 + v /r1 - 1/r2 = sgRGPscd (22b)
Eq.(22a) can h; written as :

dr/dr(re ™) = | - (81G6/cH €ir)p2 ¢23a)

This can be integrated %to obtain

e™™ = { - 2B6M¢{r)/cer (23b)
where
r
MRy = 41(Hc2gr~3dr- i) (23c)

fe
may be interpreted as the mass contained within the radius r. Ising
this in Eq.{22b)we obtain

F2ys = eXNIM(Rr) + 4Tr3pP/c23 (24)

The divergence of the energy-momentum tensor must vanish.

v : .
Thus TH;F = 0. For B =1 this gives



desdr + 172 <P + €)y¥" = 0 (232

This may be used to eliminate ¥ from Eq.(24) and the results

wrttten as

—dP/dr = GM(P)&/clpr2 [ 1+P/€ 101 +4Mr P e oM(r) 101 -26MCr)c2r 1t (24)

This equation is Known as the Tolman-Oppenheimer-Uolkot+ equation

of hrdrostatic equilibrium. The three factors in square brackets

are relativistic corrections to the MNewtonian hydrostatic equi-
librium equation

-dP/dr = GM{r)P/ra irep,

The phreical interpretation is that outward force due to the oressure

gradient is balanced by the grawvitational attraction of the mass
contained within r.

Froblem 1.

Consider the following (unrealistic) model of a star. The
internal energy density U is zero. The mass density P is constant

for r ¢ R and zero for r > R. Integrate Eq.(27) and show that
the pressure is given by

(1 = 2M/c2R) 172 - (1 - 26Mr2,c2R3y1/2 ] e B
P(r) = pe2 : (2 =
(1 - 2GMr9/C2R3y1/2 _ 3¢1 - 26M/c2ry1/2 |
where M is the total mass of the star. Show that no =s=olution with
finite pressure can exist unless R » iEMI:E' b

D
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EXPERIMENTAL TEST OF THE THEORY

Mewton“s theory of gravitation is remarkably accurate for
phenomena on the earth and in the solar system. Consequently, the
experimental tests of general relativity have invelved small effect
which until recent %earﬁ haﬁé EEEn'bare1y observable. A5 a result
general relativity has been & somewhat uninteresting field for the
experimentalist, but there are indications that this is now chang—
ing due to recently introduced techniques.

The three classical tests of general relativity are (2a) motian
of the perihelia of planetary orbits, (b) the bending of light rayrs
in a gravitational field, and fc) the gravitational red shi$t. &l

three tests were suggested in Einstein‘s 1214 paper.

(a) Motion of the perihelia of planetary arbits

We use Eqs.(3a) and (14) to write the Lagrangian for a partic]

Of unit mass in a Schwarzchild metric =zs

TR
¥

L= 1,2 gupg
= 1/2 (eVi< -y 2 5 .2 .
t - e 'rT - reed” 4 ginZe §%3 (2833
whera
" WG P (28b)

Since the orbit of a particle in a gravitational field is independ-
ent of its mass, it is sufficient to consider a particle of unit
mass. The motion is confined to a plane which we will take o be
the equatorial plane & = /2. The Lagrangian is independent of t

and ¢, so the momenta

Py = e } (2%a)

0

S

e

i
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and
— 2

Py = - r=d (2%bJ
‘_."__r-l-{- P """_,.'}.-*-"'_r
Since the Lagrangian is independent of the proper fime T, the Ham-
iltonian

H=L = 1/2 (dt/dTI2 = /2 (270
s a constant of the motion.

Using Egs.{2%a) and (2%b) in (2%c) gives the first order diff-
2rential equation for r

-V, 2 2

2aligpp s =apisy e pmzfrz mpd ¢30a)
Using Eq.(2¥b) to change the independent variable from T to ¢ and
changing the dependent variable from r to u = 17, we obtain

(Qu/dodZ + u2¢y - r_yy = (p,2 - 12/p % 4 20Mu/p 2 (30b) 4
We have used r_ = 2GM in the last term. Differentiating gives

a2y 02 4 | - (3r /2502 = Gpr¢E (30¢c)

The term containing ry js a relativistic correction, If this term
Is neglected, the egquation may be solved with the resyult

u=1isp = 1| *+ ecosd (31ad
all - 22,
whera
= 2
a1 edy = Py BM (31b)

This is the equation of an ellipse of major radius a and eccentricity
[}

. We shall now solve EQ.¢(30c) assuming that the orbit is almost
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circular and treatin the term containi ' i
. ting ning r, as a small correction.
For a2 circular orbit

s o= (3r_sayu” = Gprf (323)
Call the solution of this Uy and define it to be

ug = 1;‘&(!. - ge} o L (32b
Mow write

usdy = uﬂ + ui{ﬁ} C32¢c )

and assume u, <(( ug. Meglecting a term in UiEr we find that u
satisfies

= 2 s
d%u, /de” * (I EFSuﬂJul = p (32d) e

which has the solution

Uy = Rcoswd f32e)

whera

= Lorgs
© = (1 - 3r_up) (32

Setting the constant of integration & equal to gUg we abtain

PR g - $
g = eCOosW (329
a(l = edy
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This is the equation for a precessing ellipse. The minimum
value of r occurs at ¢ = 0 and again at ¢ = 2X/w. Therefore the

precession per orbit is

£0 = 2WCI/W - 1) SGM/all - el (33
This may be divided by the period of an orbit

T = 203372 gy 1/2 (3425
to obtain

5¢/T = &G6M/Tall - o2, ¢34b)

for the rate of precession. | h

When the numbers are put into Eq.{24), one finds an advance
of the perihelion of 42.9" per century for the planet Mercury, 3.8"
for Yenus, 3.8" for Earth, and 1.35" for Mars.

This precession is most easily observed for Mercury becauss
of the large eccentricity of its orbit. There is a precession due
to the perturbation of Mercury’s orbit by the other planets. The
principal contributions are 278" per century due to venus, 70" due
to earth, and 154" due to Jupiter. When all of these contributions
are taken into account, there remains a discrepancy of 43" per
century. This discrepancy was Known to astronomers before Einstein’s
paper was published and had been the subject of some speculation.
It was thought that it might indicate the presence of an unobserved
planet between Mercury and the sun. In anticipation of its discovery
this hrpothetical planet was named Yulcan, but despite careful
searching of the skies zt the time of solar eclipses no planet could
be found. Einstein‘s theory provided almost exactly the right pre-

cession to account for the discrepancy. This was one of the most

o
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dramatic esarly successes of the theory. More recently, Hulse and
Taylor discovered a pulsar in & binary svstem. This svstem consist-
ed of two compact bodies in an elliptical orbit with a maximum sap-
aration of only about a = 1011 cm. (about the radius of the sun).
This small value of a makes the rate of precession about 4 degrees
per year. A pulsar emits pulses of radio waves in a reguliar, clock-
like fashion wriose arrival time at the earth can be measured with
high precission. This makes possible an accurate determination of
the orbital parameters of the bBinary s¥stem. The measured precession
agrees well with the predictions of Einstein’s theorvy. Futhermore,
this system should lose energy by the radiation of gravitational
Wwaves causing a decrease of the orbital radius and an increase in
orbital frequency. This has been observed, and again the zgreement

wtth Einstein’s theory is good.

Froblem 2.

Rewrite Eq.(30a) as
.
172 % 4 Ur> = (py 2 =13/2 = E
where

£ 2
Po "e/20 = pycr 203 “

is an effective potential. Show that all orbits with Py < 43 rg arrive
at r = 0.

Froblem 3,

Consider radial motion of particles in & Schwarzschild metric.

Replace the constant of the motion Pt by rm by defining

2 -1 = - kr

F‘t E.-""Fl"'m T

where K = *1, 0. Change the independent variable from T to 7 by
defining
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e

A7 |& rdy

S

=how *hat the soclutions are

P = a2 (1 = cosNdk)

3, /2 _
T - Ty = 1/2k (r, rrgpi (N = 1/4K inMdk)

' 1/2 - ;
P - tg = cpmgggjqpmfpi - K3 (N = 170K sinMjK)
Z2y1.72
= A
T R m
' - -1/2
| tanMNJK 2 Lr e 1 1
RO ) 2

ST tantdks2 ¢ (s 172
P 1an Pm/kre =1) !

Thege results will be used in a later section.

{b) The Bending of Light Ravs and Planetary Radar Reflections

A photon moves along a spacetime path with dT = 0. We may use
d <
our previous derivation of the arbit until Eq.ﬁéit} is obtained Za

and at this point set dT = 0. From Eg.(2%b) we see that dT = 0

implies Pyp = =. This gives

dey ded 4 4 - 3r uirz = 0 (35)

as the equation for the orbit of a photon. The effects of the gray—
itational field are contained in the third term. I1f this term
neglected a solution is found to be

[ =

cosd

Iy =

i/r (3&a)

or
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R = rcaostd (2&b?

This is the equation of a straight line that passes the origin
(where the gravitating body

18 located) at a distance of R, e
shall call R the

impact parameter., We shall solve Eq.(35) approx-

imately treating the third term as a perturbation. We write
;= U% * Uy where uy is given by Eq.(38>. Then, neglecting terms

in u,“ and Ps”i we obtain the equation

dzh;fdmz + 2

U, = (3r_ /2R IcOS%e

A,
L0y
1
T

We add the particular integral of this equation to Usy to cbtain

2 25050 o SR o mame e (28>
R aR2

In terms of the Cartesian coordinated x = rcostd and » = rsind, this
equation may be written as

% + 2y
R = x + t E " q
2R (x2 4+ y2,1/2

(3%

This gives the path in the x-y plane sKetched in Fig.l

7 i

™y
D,




Ji=t?

= |
For vwery» large '¥! we obtain

R = x * ?rifﬁ C g0z

and

dx. dy =+ PEIR C40b>

The angular deflection of the photons path by the gravitational

field is

& s gEaap (40¢

For a2 ray of light from a star Just grazing the edge of the sun,

¢ = 3 Km and R = 700,000 Km, so & is about 1.75",
In 1?19, only three yvears after the publication of Einstein’s

paper, a particularly favorable eclipse of the sun made |t possible
to photograph starlight which passed very close to the sun and to
detect small apparent changes in the positions of stars. Expeditions
were sent by the Roval Society and the Roval Astronomical Society

of Breat Britain to favorable positions in Africa and South America
tor viewing the eclipse. The measured displacements of the positions
of stars near the solar disc agreed very well with the caiculated
values.,

Recently another method has been devised for measuring the
changes in the propagation characteristics of light near a massive
body such as the sun, This method invelves reflecting a radar beam
from a planet and measuring the time required for a photon to make
the  trip from the earth to the planet and back. Consider Fig.2.
NaTUET?, one would expect the travel time to be t = 2¢(a + Brrsc,
but because the photon is moving near the sun small corrections

are required.
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The path of a photon is given by d7 = 0. Using the Schwarz-
schild metric with & = /2 this it

dr2 r2492
d72 = g = ¢1 - ro/rodte - S e €41
Ezfl - rsfr) cE
From inspection of Fig.l we find
= R sind d#
ro= dr = (427
cosd :nizm

These may be used to eliminate r and dr from Eq.<{4l) which then

becomes

RZde2 1 sindg B
dtZ2 = + (433

2
€€eosfe (1 - rg/Rcose) (1 - rg/Rcose)2cos2e

Since Fs/R is a very smal! quantity, we can neglect a1l but the
first-order terms and obtain

(445

dt

Rd® - q o1+ sanzmbi}
+ =

c cos2y 2Rcost

H=1%
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Integrating between the 1imits shown in the figure and multiplring
b¥ 2, we find that the round trip time is

2Ca + b r {(r. + b)(r_ +
t = kit R imepa il £
= = RZ

The first term is the result that would be obtained using Euclidean
geometry». The second term iz the relativistic correction.,

In a typical measurement the first term is of the order of
1000 sec, while the second term is of order 100 Psec. Present-day
technigues are good enough %o allow measurements to about 10 Hsec,
Thus the experiments are capable of checKing the predictions of
general relativity to about 10% accuracy. There is good agreement

between theory and experiment.

o

Problem 4,

L]

Use EgQ.(25) to show that a photon approaching a massive body
with impact parameter R less than 33/25y,.2 WiTT b ean e o



fffiﬂ

tc) The Gravitational Red Shift

Factoring out dtZ in the Schwarzschild metric gives

z
- . u .
. I P

Gl == PR

where e ua'and Yy are the components of velocity in spherical
coordinates. When Fe = 0 we obtain the relation between dt and dt

4t = dt¢(l - y231/2 T i

that is familiar from the special theory of relativity. For &

particle at rest in & gravitational field, we +ind
1
dv = dt(1 = r_,.,1/2 | (48) o

The period of oscillation of an atom at r is related to the period
of oscillation of an identical atem at r = by

7
T g (49) g

The frequency shift is given by

3

VIV = = AT/T = (T = Tod/Tw 22 = pg/2r = GU/ect (300

For an atom on the surface of the =sun this is a very small

shift of about 2 x 1078 1, the case of the companicon of Sirius,

which is a very dense white dwar+f star, the shift is about 20 times
larger. These measurements are very diffjcyult because the shift

is 0 small, but they have been made and show agreement with the
theory.
In 1940 Mossbauer discovered an effect that made it possible

to observe the gravitational red shift in the laboratory. Under
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certain conditions some nuclei such as - Fe emit Gamma rars of
¢xtremely sharply defined frequency. & crvetal of the same e2lement
wWwill resonantly absorb these gamma rays. Anything that shifts the
frequency of these gamma rars, such as the gravitational red shift
or the Doppler effect, will reduce the absorption. Congsider two
such crystals, a source and an absorber, separated by & vertical
distance h in the earth’s gravitational field. The frequency diff-

erence Av between sourve and absorber is given by

Av/v = ghse2 (S1y

where g is the gravitational acceleration at the sarth’s surface.
For h = 10 meters this is eniy about Sri =T Al though these (s ex-
tremely smali it appreciably reduces the absorbtion. The absorptiaon
can be restored by moving the absorber downward with a velocity v.
This produces a frequency shift due ta the Doppler effect given by

vV = u/ce (SZ)

=
The velocity necessary to compensate for the gravitational shift
is only v = gh/c = 3 x 1077 cms/sec. This experiment was done by

Pound and Rebka in 1940. The gravitational red shift was measured

to an experimental accuracy of about 1Y and good agreesment with
theory» was found.
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THE KRUSKAL-SZEKERES EXTENSION OF THE SCHWARZSCHILD METRIC

Ingpection of the Schwarzschold metric, Eq.<{14) shows that one
or another of the components of the metric tencsor becomes infinite

at r =0 and r = r.+ These 'singularities may be due either to true
singularities of the spacetime geometry or to the failure of the

coordinate system chosen to proper]y cover a region of spacetime.
It is not immediately obvious which is the case. 1§ a singularity
ie due to a choice of coordinate s¥stem, then it should be possible
to remove it by transforming to a new and better behaved coordinate
system.

One might expect that the curvature would become infinite at
3 true spacetime singularity. However, the components of the cury-

ature tensor Ruyep depend on the choice of coordinates, =0 again
singularities in these components may be due to the choice of co-

ordinate srstem. The curvature scalar R is independent of the choice

of coordinates, Now, R = 0 follows from contraction of the Einstein

vacuum equations Ry, - Quy-2 R = 0, We may conclude that the apparent
singularity at r = Fg IS8 & coordinate singularity rather than a
singularity in spacetime. We cannot draw such a conclusion about

the point r = 0, since examination of R shows that |t vanishes be-
cause of cancellation of terms that vary as inverse powers aof r

and so0 become infinite at r = 0. It is not mathematically legitimate
to set « - = = 0, Indeed, our knowledge of Newtonian gravitation

leads us to expect a singularity at the point r = 0 which is the
location of the point masss that is the source of the gravitational
fteld. These considerations motivate us to search for a new coordinate

sr¥stem in which the coordinate singularity at r = rg is removed.

Before considering the Schwarzschild metric it is useful to
gxamine some simpler cases of coordinate singularities., First,

consider the metric for three dimensional flat Space
ds2 = 4r? 4+ 12¢de? + since dol) (53

The contravariant component of the metric tensor g% pecomes in-
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+intrte at r = 0 and at &

h

D and T. Howewver, we Know that the
coordinate transformation

¥ = reinocosd
¥ = rsinésing (54>
Z = rcose

»ialds the metric

ds2 = dgxl dye + dzZ2 Sl=p
Wi thout singularities,

AS a second example consider the metric

dT2 = ¢t~ 9dt2 - dx2 - dy2 - gz2 ‘ (Séa)

defined over the coordinate ranges —= < x,y,z ¢ +, 0 < t ¢ =, The
metric appears to have a singultarity at t = 0 and the coordinate

range of t was chosen to avoid crossing this singularity. The co-
ordinate transformation

Y = 1/t (3&b2

vielde the metric
d12 = dt’ 2 = dx2 - ,:[FE - dz< {54

without singularities. Futhermore we can extend the range of t°
to <= ( t’ { «. The original spacetime is seen toc be the hal+f of
Minkowsk| space with t » 0, The coordinate transformation, Eq.{S4b),
has removed the singularity and made it possible to extend the
range of coordinates to cover all of MinkKowskKi Space.

In these two examples the coordinate transformations that re=

moved the singularities were rather sasily found. Our third example
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| s somewhat morse subtle and alsc more closely related =g the Schwarz-
schild metric, Consider the metric

dt2 = x2gt2 - gx2 - gy2 - gg2 Gehia

with the coordinate ranges —= ¢ t,y,z ¢ +w y @ ¢ x < =, The metric
appears to have a singularity at x = 0 and the coordinate range

was chosen to avoid crossing this éingularitr. Since the coordinates
¥ and z will play no role in the work that follows, we shall for

simplicity omit them and work with the 2=dimensional spacetime
with metric

dTe = 242 - g2 (S7h)

This spacetime is called Rindler csparetime.

If we were to calculate the scalar curvature for this metric,
we would find that R = 0 and there was no stngular behavior at
x = 0. (We omit the calculation). We should be able to find a ca-
ordinate system in which the metric s the hinkmwgki metric, but
it is not so obvious how to find the required coordinate transform-
ation. A useful trick that works in the Schwarzschild case as wel]

as here is to take as coordinate curves the null gecodesics, That
15 we write the null condition

d72 = g = x2dt2 - dx2 (58a)
and solye

uhorla | S B S A ({S8b»
to obtain

t =% Inx + constant (S8
We now define nuil coordinates {u, v by

U=+t -1inx, v =t + Inx (9%
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The coordinate u is constant along &n outgoing null geodesic and
W is constant along an incoming null geodesic, In these coordinates
the metric is

dTZ = eV~Ududu (607
Mow, an obwvious change of coordinates

U= - g7u ¥

% ST

!
o

gives an even simpler metric
dT¢ = gudy (&1b)

The ranges of U and V. that correspond to the ranges of x and t are
easily found to be -« { U {0, 0 ¢V < +o, However, since Egq.(&1b)
is free of singularities we can extent thege ranges to —-= ( U { +e,

= (W {4, 8 further transformation
T = (U + U 2, o= (Y = U2 {&2ar

Qives the Minkowski metric

dt2 = 472 - gx2 (62b)

with the coordinate ranges —= ¢ X < Yo, = { T { +eo,

-‘-"I

H -
!
It is now a2 simple matter to find the transformations connect-
ing the old coordinates (t,x) and the new coordinates (TyX); these

ara

x = (X& - T2,1/2 t = tanh~ (T (83a)

>
il

-
i

xcosht, xsinht {&3b)

Curves of constant x and t are sketched in Fig.2. It is seen that
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Rindler spacetime is simply the wedge X > [T} of Minkowski space-
time. Once again, we have sycceeded in finding a coordinate trans-
formation that has removed an apparent singularity and allowed an

extension of spacetime. T

Fig.3"'

Now we turn our attention to the Schwarzschild spacetime with
metric given by Eg.(14). Since the coordinates € and & will not be
changed by the transformations that follow, we shall ignore them

and for simplicity consider the 2-dimenzional Spacetime with metric

2 E dr'E
dT< = (1 =- SR i ey (&4
L6 Bord
A€ in the case of Rindler spacetime, we shall take as coordinate
curves null geosesics. We set dT = 0 and solve
drsdt = = (1 - Fe/r) (&5a)

to obtain

t =% r+ + constant (45B)



Jl=2"
whers

% = pr + Fiin(rﬁri - 132 L &Sc )

s called the Reqge-blheeler tortoise coordinate.
duce new coordinates {u,uv) by

Mow we jptro-

U =t = ﬁ#, v o= f ;-r* {&éa)

t=Cv + U2, rx= (v - yis2 (&&b)
In these new coordinates the metric is

dT2 = (1 - /T dudy (&dc)
which may also be written as

912 = (r_srre 708 eV = w/2rg st Eacr

Next we make the transformation of coordinates

U= - e-us2rs, U = g¥/2r's (&7a)
and obtain the metric

g9t<e = i4p§£rie'“frs duUgy (&7

Finaily, the change of coordinates given in Eq.(42a) gives the

metric found independently by Kruskal and Szekeres in 1740,

412 = (4n2/PIe~P/Ts (T2 - dX2) ~ 12¢d02 _ 4,126 A62)  (&8)

blle have added on the terms in the coordinates 9 and ¢ that were
omi tted at the beginning of this derivation. In Eq.(48) r is to be

regarded as a function of the new coordinates X and T glven implicit-
l¥ by



r/
R s g Beeusy X EL = T2
and t is given by

t = Ergtanh_lﬁfo}

Curves of constant r and t in the X-T plane are sketched in Fig.4

-

(aPa)l

C&Pb

Fig.4

/-t
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From Eg.(4%a) we see that *the lines r = constant in the r-t
plane map onto hyperbolas X€ - TZ = constant in the X-T plane. For

r} r. these hyperbolas have KE -T2 = 3 pasitive constant and,
foror ¥ e they have HE - T2 = 5 negative constant. When r = p

the hyperbolas degenerate into the straight lines X = = T, Thei

two hrperbolas corresponding to r = 0 are shown in the tigure, Lines
of constant t in the r—t plane correspond to lines in the X-T plane
that pass through the origin and lie in the wedge shaped regions
between X = T and X = =T, No values aof t can be assigned to points
ar the A=T plane with JTKE 3 0. The lipes 2= T andi= sTogigide
the X-T plane into four regiones labeled L Wl GLEL ang TY imvkhe
figure. It should be remembered that each peint in the figure cor=-

responds to a 2-gphere when ® and ¢ are allowed to vary over their
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ranges. The region of the r—-t plane with r~ 3 Fe 15 mapped into
region I of the X-T plane. This is the part of the universs that

we live in., OQur coordinate transformation from Lk %0 (X, Ty allows
us to extend this region into the regions I, I1, 11}, IV bounded
by the curves r= 0 without crossing = stngularity. The singularity
at r =0 remains in the metric of Eg.(48).
The world line of a photon has dT = 0. From Eq.(48) we see
that for a radia?]y'mnufng bﬁﬁtan dT/dx = * 1. These world
lines are straight lines with a slope of 45 degrees. Outgoing photons
have a positive slope and incoming photons have a negative E]DPE;

The worldlines of massive particles hawve dr2 > 0 which implies

+dT/dX) > 1 for the world lines of radially moving massive particles.
Now, consider the world line of a photon or massive particle

moving radially inward from region [. It will pass through the line

labeled (r = r_, t = + »), enter region II and collide with the
singularity at r = 0. On the other hand, the worlidline of a radiallyw

outward moving photon or massive particle that starts in region II
will collide with the singularity at r = 0§ before i+ can pass into

region I, Region II is called a black hole. Particles can 4311

into the black hole through the sphere at r = F<, but no particle

can ever emerge through this sphere into region I. It is as if the
source of the gravitational field at r = 0 surrounded i*self with

a one-way spherical membrane of radius Fe through which particles
could pass inward but not ocutward.

The properties of region IIl are the "time reverced® properties
of region I. No particle can enter region [11 from region [, but
any world line in region III must have originated at the singularity

at r =0 and will ultimately pass through the line labeled ¢r = p

s
t = —==) into region I. Region 11l is called a white hole, :

It is interesting to note that, although Einstein’s equations
are. in variant under the time reversal transformation t = =
time irreversible behavior results in the solutions (that is, part-
icles falling into but not out of black holes, and particles falling
out of but not into white holes)., Nature compensates for this by
admitting both black and white hole solutions.

Region IV is an exact replica of region [. It represents an-

other asymptotically flat region of spacetime. Frem the point of
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view of an observer in region I, it lies inside the radius r = r
Note that observers in regions [ and IV would never be azble to

.E ]

communicate. & photon directed from an observer in [ toward 1U
would collide with the zingularity at r = 0 before it could reach
region IV and vice versa.

Let us consider a rocket ship falling into a black hole. The
time measured by a clock carried in the ship is the proper time

along its world line. The rocket éhjﬁ would fall through the sphere

at r = r_ and strike the singularity at r =0 in a finite proper

time as Problem S below shows. Let us consider how this appears to
a stationary observer at a distance r >3 F.. For this observer the
praper time is t. For this observer the rocket ship does not reach

= Tg until ¢+ = =, Light signais sent from the ship to the distant
cbserver would be shifted toward the red by bath the Doppler effect

and gravitational red shift. The distance ocbserver would see the

ship approaching but never reaching the sphere r = e &4& the light
from it was shifted toward the red,
Problem 5.

Consider a particle relessed from rest at p = "g. Show that
tt falls into the singularity at 0 = 0 in a proper time

1/
T = -:m:ruxzc}-:rp/tg; £




COSMOLOGICAL SOLUTIONS

When viewed on a small icéle, the matter in the universe is
distributed iﬁ.a very nonuniform manner. It is concentrated in
planets and stars which are concentrated in galaxies which in turn
are concentrated in clusters of galaxies. However, from a large
scale viewpoint it seems reasonable to disregard these inhomo-
geneities and to consider matter to be uniformly distributed through-
out all of space. From what we Kpow +rom astronomical observations
there is no preferred direction in space, =0 it s2ems reasonable
to assume the distribution of matter in the univerce is both homo-
genous and jaatrupjé. The question we wish to ask is this: What
structure of spacetime is consistent with =a homogenous isotropic
distribution of matter?

First, we must choose a coordinate sye=tem. The most convenient
choice is one in which each point moves with the matter located at
that point. That is, each particle of matter s lTabeled with three
spatial coordinates which it carries with it for all times. This

is called a comoving roordinate E¥stem. The time coordinate is

taken to be the proper time that would be measured by a clock carried
by the particle., In the comoving system the velocity of matter is
zero by definition, since the coordinates of = particle do not

change with time. By our assumption, space is isotropic, so there

ts nothing to distinguish one spatial direction from another., It

follows that the components 4., of the metric tensor must vanish.
Therefore the metric can be written as

dTZ = g4¢2 - 412 ¢70a)

where
dl2 = gigdxidxk (70b> Fﬁ;f

is the spatial separation between neighboring points. In this



(t-33

section we employ naturzal units with ¢ = 1.

Mext, we must choose the structure of space. That =, we must

choose dl1% g, such a way as to be consistent with our assumption

that space is homogenous and isotropic. The simplist choice is

412 = 22¢t)0dx2 + dy2 + 4223

a2(t)ldrd + r2¢de2 + ginZe 4923] (?1a)

where a(t) is a scale factor that may depend on time. Wi*h this
choice space is flat, although spacetime mar be curved. Other chojces
of homogenows, isotropic spaces are the 2=¢phere and the 3-pseudo-

sphere with metrics given respectively bvw
dl12 = a2Z¢t30dx? + sin2x(de2 + sinZ¢ do2)] (718)

d12 = 22¢t)[dx2 + sinhZx(de2 + sinZe do2)] (71e)
These were discussed in Example (b)> and Problem 4 of chapter &. The
E—EEHEPE has positive curvature, and the S-pseudosphere has negative
curvature.

We may use Eg.(7la,b,c) in Eq.¢70) and write the space time

metric as

dT2 = dtZ - a2¢t)0dx? +r2¢x,k>¢d02 + sin2e de2)1 (72a)

where K = * |, 0 and

sSin¥ , K = +#1
F{X,K?) = (1/]K)sinxXdK = ¢ % . = 0 CP2b)
sinhx y K = =1

The curvature and Einstein tensors for these three metrics were
worked out in Example (c) and Problems 4 and S of Chapter 4. The

components of the Einstein tensors may be summarized as

Gy = -2a’%/a? - 3K/a’
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i

[y
ek p—a
I
o
i) kg

= Gg = -2a’’/a - a’2/aZ - K/al

where the prime denotes a derivative with respect to the arqument t,
AT other components of the Einstein tensor uvanish.
These are to be used in the Einstein fieid equations, Eq.(1),

with the energy-momentum tensor given by

T = M 13 :
y =P Pt by (74>

Since the spatial components of the velocity d—yactor uznicsh oy
the comoving coordinates, u! = ¢1,0,0,0>, and the nonvanishing com-

ponents of the energr-momentum tensor zre

e

{7Sa) i

I
T

Sice

3
i
where € iz the total energy per unit valume including rest mass

and thermal enerqgy.

The two independent Einstein equations ars
a’? &+ K = (SAG/3)Eal (Pbal
2a’’sa + a’2/32 4+ k/a2 = - grGP (74D

Eq.C7éa) may be used in (7éb) to rewrite |t zs

El’h\ B
a’f = - 4pB(P+ €)a  =— #7¢ [erzp) (74c) i
Now consider
BNG d(€a®) _ daca’2 +k)
3 dt dt

= a’¢a’% + k) + Zaa‘a‘’



= SpGPaly-
- SWGP  dad (77a)
3 d+
We can write
d€a%) + P da¥ = T d5 = T desad)  _ g {7955

dt gt dt dt

s

We recognize this as the law of conservation of entropy with T the

temperature, S the entropy and = the entropy per unit volume.

We now specialize to the case P = U =20, so0 € = r., e call

this the dust model since all of the energy i1s in the rest mass

of the particles of the universe. Eq.(77b) gives

(BTG-3)€a5 = constant = 3 (7ED

It is convenient to change the independent variable from t to M

with the relation between the two given by
dt = ad{t{rdm (773
With this change Eq.(7%a) becomes

(da/dMZ + ka2 = a_a (80)

This is easily solved with the result

at™ _ An(l = cosMNik) (81a)
2

-

o
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£q.L7%?) can now be integrated to obtain

5 2m Gl S0 TIIK) (818)
2K P

The cConstants of integration have been chosen so that = = 0 and
t =0 at M= 0.

This completes the Eufutian.lwifh the scale factor determined,
the metric is known. It is useful to makKe the change of variable

of EQ.(79) in Eq.(72) and write the metric aes
472 = a2¢Mm (a2 - ax® - p2¢x,K3¢d02 + sin26 d82)3 82

We shall now examine the three cases K = +1, =1 and 0 separate-
l¥. For k = + 1,

alMy = g /2 (1 - cosM (83a)
(M = a /2 (1 = sinM ) (83b>
The scale factor starts at zeroc at the time t = 0, expands to a

max imum value of 4. (which is why we chose this notation) at a time

t = Ma_~ 2 and then falls to zerm at *time T am * This universe is I
closed” The greatest spatial distance between any two points in

the universe at the time t is Wal(t), the distance between & point
at ¥ = 0 and a point at ¥ = %, The distance between any two points

in the universe is zero at time t+ = 0 and again at t = ﬁam_ According
to Eq.{(78), The energy density (which is equal to the mass density

becomes infinite at these two times. The =calar curvature becomes

infinite at these two times. The time t = 0 is called the time of
the bLg_gingjand the time & = Wa_ is called the time of the e

Big crunch. Presumably the universe did not exist before the
Big bang and will no leonger exist after the hig crunch.
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t(Md = a /2 (sinhf - M) (34db>
This universe is open. The scale factor is zero at time

creases monotonically thereafter, ultimately

velocity of light. At t

t and in-
increasing with the
0 the distance between any two particles

in the universe is zero and the mass density is infinite, There

a big bang but no big crunch.

i S

For K = 0 we can take the 1limit of Eqs.(21a,b> as K + 0 and
ogbtain

acm A ﬂz (83a?’

=
Ansl2 N

tEim (8abl

We may eliminate M between these two equations and obtain

SCETnE amI“EqatfzJEfg

{83c?

LY

This is an open universe with a big bang at t = 0 followed by mono-

tonic expansion. Eqs.(85a,b,c? are the limiting forms of Egs.(83a,b)
and Eqs.(34a,b) for sufficiently =mall times.

Next, let us consider an observer at ¥ = 0 observing a distant

galaxy with coordinate ¥. The distance from the observer tao the

galtaxy is r = a{t)x according to Eq.(72). The velocity of recession
of the galaxy is

v = dr/dt = a'% = a’Sanr = Hpe L8830

where

H= a'/a (8&b>

is called Hubble’s constant. (It is not & constant of course. Its

value at the present time is denoted by Hy.> The expansion of the
universe can be detected by observation of the velocity of recession

of distant galaxies by the Doppler shifts of spectral lines emitted
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oy atoms in these galaxies. At the present time the best determin-

ation of Hy from the measurement of v and r for 3 laerge number of
galaxies is

Hg = SO km sec ! MpcTl = 17 x 10717 gec~! (87)

where we have used 1| megaparses = 3 x 1017 km. We should emphasize
that there is tmni?deréble-uncertainty in this number because of
the difficulty of determining the distance %o galaxies. The number
could be in error by as much as a factor of two.

The obssrved value of Hubble’s constant can be used to esti-

mate the age of the universe. Assuming that our universe is adequate-

¥ described by a k = 0 solution, we use Eq.(25c) tao find
H = a’/a = 2/3¢ ¢238a)
10 years (88b)

age of universe = EKEHH = 1.3 x 10

wWhether aér universe is open or closed, and which of the three
models, K = +1, =1, 0, best describes ocur universe is a matter of
considerable interest. In principle this question can be answered
by observation. We divide Eq.(74a) through by a2 ind write

kK/aZ = gRGP/3 - a’2/32 = gngps3 - K2 (3920

kfaﬂEHDE ekt e (89D

where the critical mass density is

Pc . EHEEJEIG =5 x 10730 gn'n,#‘n‘:mE'r ({B%c)
I£ P 2 Pcy then K = +1 and the universe will eventually collapse.
IF @ £ e wre Pos P., then kK = -1 or K = 0 and the universe wil]

expand forewver. Unfortunately it is very difficult to determine
the mass density of the universe. There is evidence that there exists

matter in the universe that is not visible. The present indications

are that p differs from P_ by no more than one or two orders of
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magni tude and may be either greater than or less than Pc_ Some theoret-
ical prejudices favor P = Pc.

Mear the time of the big bang the matter in the universe is
very highly compressed and the assumption that the snergy is mostly
rest mass energy is not valid. The energy density of radiation will
we dominant. The energy per unit volume of radiation is U = qu,
and the enropy per unit volume iz 4bT3/3 where b = EEHIE. The con-
servaion of entropy, Eq.(77b), gives sa° = constant, which implies
aT = constant. The temperature varies inversely as a(t)., We may

rewrite Eq.(74a) as
(da/dM< + ka? = guG/3 €a’ (0a)
Including both rest mass and radiant energy 1n £, we obtain

8MG/3 €a% = gwe/2 <p + BT ad

= Same el (P0b)
where a_ is given by Eq.(B88) and =
C = 8XGb{(aT>*/2 = constant. ($0c)
Therefore
(darsdN)e 4+ ka2 = a s+ C (90d)

For sufficiently early times, a{t) is very small and C > N Haz
and the solution is

a = Cl/24 (P1a)
t = cl/Zn2,5 (P1b)
a =gl 5,102 (%1c)

The expansion of the universe begins as the 1/2 power of t rather
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=

L=,

273 power as given by Egq.(85c:.

Before Hubble discovered the recession of distant galaxies in

1929 i1

Wwas generallr believed that the univerce was stationary.

Einsiein was disappointed to find that the cosmological equations

had no stationary solutions. In fact it is seen ¥rom Eg.(7&4c) that

for any positive pressure and enerqy, the universe must be either

expanding or contracting. Einstein JooKed for a way to modify the

fisld equations to correct what he concidered to be & deplorable

situation. The modification he found was %o add a term *Quy to
Eq.¢1l) so that it becomes

Oy *xgy, = - BWGT (923 -

in natural units. » is a conestant called the cosmological

constant. Since the covariant derivative of the metric tensar

vanishes, the divergence of the left hand side vanishes after this

addition as it did pefore. If X ie sufficiently small, the de-

viation from Newton’s theory in the small velocity, weak Field limit

would be negligible.

With the addition of this term, Eqs.(74a,c) are replaced bv

3’2 + Kk - na2/3 = (BWE/3rea’ (93a)

a’’ = Xa/3 = - (4UG/3)(E + 3Pla (23037
These equations hava a stationary solution with K = 1 and a“ = a°“* = 0
Qgiven by

A= 4NG(E + 3P), | = 4RG(E + P)aZl (34)

For a dust model! with P = 0, the solution is a universe that is a

3-sphere of radius a = 1/JA. These static solutions are unstable;

a2 small

perturbation of the solution grows exponentially with time.

tSee Problem &.)

In

1922 the Russian mathematician Friedmann discovered the

models of nonstatic universes discussed earlier in this section.
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Einstein immediately recognized the impartance of this discovery

and concluded that there was no longer any need for the term Ay
in the field equations. He is reported to have told George Gamov

that the introduction of this term was the biggest bSlunder of his
fife. Hubble’s discovery of the cosmological red shift & few years
later gave further support to Friedmann‘s models. Never—the-less,

there is no cbvious reason why the term *Quy should not be in the
tield eguations. Why x should be =0 very small iz a question that

has been given no satisfactory answer at the present time.

Problem &,
Assuming a dust model with P = 0, Write Eg.(%?3b) as

a’’ = xas3 = amHEaE

Linearize this equation about the stationary solution by writing

a = a5 + Sal(t)

where

39 = 1/dn = 3a /2

and retaining only the linear terms in %$a. Show that there are

solutions in which $a{t) grows exponentialiy.
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SOME ITMHOMOGEMOUS LNIVERSES

In this section we shall construct inhomogenous centrally
srmmetric solutions by patching together the Schwarzschild solution
and the cosmological solutions obtained in sarlier sections of this
chapter. We begin by reexamining the notion of comoving coordinate
s¥stems. Consider the radial motion of a particle in a Schwarzschild
metric. The Lagrangian is given by Eq.728), and the constants of

the motion are given by Eqs. (2%a,b,c). For radial motion Py =0.
The equations of motion are

172

dr/d71 L935a)

S R e

(o] = Krggpm;lgz

il = rgs/r)

dt/drt

(¥5bs

LY

The solution of these equations and the definition of K and r. are

given in Problem 2. When ¥ = + 1, the particles are bound and r

m
ts the maximum value of r.

MNow, consider an infinite set of particles with 411 possible

values of Fe, and K. Each particle is labeled with the value of
Jol and k that it carries. We shall make a coordinate transformation
from (t,r,8,9) to the comoving coordinates (TP @.92. We can now

write the Schwarzschild metric, Egq.¢(14), as

dsZ2 = (I = ro/MIIDE/ 3T dt + (35 J"m:'fdr‘m]E
m
- (1 - Pigp)-lfiaﬁfjf}r dr + (QrfprmJTdeJE
m
- r2¢r_ 1rdn” (96a)

where
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dne = g8l + sin<edpsl (&b

In order to aveoid confusion we have replaged the differentia] of
proper time dT by ds on the left hand side of Eq.(%4a) =ince T

s the fime variable of the comoving coordinate system. The partial

derivatives (2r/9T) and (2t/2T}).  are given by Egs.(%5a,b) since
In those equations r was treated Re & constant and so the notation
for ordinary dEPIU&tLUEE was used. The partial derivatives ¢(Jp/op m T
and (2t m’t are to some extent arbitrary since the constants of
1ntegratlnn Tg and ty in the solutions of Problem 3 mar be chosen

to be arbitrary functions of Pm+ We may use thisgs arbitrariness to
eliminate the coefficient of dr,dt in Egq.(%4a) by choosing

(Dt/or ) = 1 5 w20 28 00 Ronli Jo o
Gl vem: i A T (2t/27T)>
= 11 r
m
With this choice the metric becomes
2 2 r 2 T S s 2
ds“ = 4dv< - m? dr TERRCR S yan (F3a)
I - kp_/r m 14
s m

wherea

PPy TY = Qe D, G
These coordinates are called Novikov coordinates, ~, o

D
We shall arrive at this metric from a different starting point

and at the same time obtain the field esquations. In Problem 7 of

Chapter & we found the Einstein tensor for the metric
ds2 = gt2 - eldrmz - eWdn< (99

where A = L{rm,T} and w = m(rm,T). The notation has been changed
to agree with the notation we are currently using. Using the results
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of Problem 7, the Einstein field equations are

o _ .- A
BNETy = 70 = e Thw s« 3024 - xogesz
+ 2,8 & Lihs2d c10Wa
= re 2
gueTt = eV - e ™M 24 + i+ 2°/4 (100b)
sreTS = EﬁETg = - eThW /2 + w24 - AW /4]
bty 2 ’- IE r a
+ X2+ AT4 /2 + O5/a 4R 0/ (100¢)
Em‘g'j'é = W2 -NW 2 R ¢100d)
For all other choices of B and v, E: = 0. Dots denote derivatives
with respect to T and primes denote derivatives with respect to e
We shall assume a dust model, so that in a comoving coordinate
system Tg = P and all other components vanish. Eq.{100d) can be
wriltten as
A=W o+ 20700 = 2T (0 + 1nwt2) ¢101a>

which may be integrated to obtain

EMM#E

(ig0ib>

4f2frm}

where f(r.) is an arbitrary function. When this is used in Egq.(100b>,
one obtains

(1 - 2y 4 SW¢gy + 3¢2£4} = 0

e‘{ﬂ;"’?

I

: 2201 - $250/2 4 L3002 3% oy (1023)
() 2T



This may be integrated to obtain

widd

WOSZ o+ 201 - §2) = Firm;e'gmfz (10zb»

wWhere F(Pm} is an arbitrary function.
Using Eq.¢10ib> in (100c), one obtains

2 _(Eq.C102)} = 0 _ (1033
er

so nothing new is cobtained from Eq.(100c).

Finall», using Eqe.¢101b> and ¢10Zb) in ¢i0Q0a), we obtain
SnGP = CL043
{.I"Iﬂ"

We now compare the metrics, Eg.(?2a) and (%% and identify

e = rZ2(p 1) C10%a)
Using this in Eq.iiDEEJ gives

. 2

T = (2 - 1) + F/p . (1050

Comparison with Eq.(%95a) leads us to identifw

2 -
+ {rmb = | - Hrﬁirm}frm {10&a)

Fle ) = 2p_(r ) (108b)

With these identifications, Eq.{10ib) becomes

.2
eh = _M7 700, T (107)

] = Hl'“s,a‘pm

M- #¢
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This agrees with the coefficient of dri fn Eq.{¥3a). We hawve

arrived at Eq.(PBa) by two routes; Ffirst, bv a transformation of
ceordinates from the Schwarzschild metric, and then by a&SSuUMing
Eq.(?9) for the metric and integrating the field squations. The
second derivation shows that it is not necessary *o tresat rs as a
constant; it can be an arbitrary function of "o+ The relation between

Felrn? and the mass density s given by Eq.{(104) which mav be written
a5 : :

STGP(r_ Ty T c102>
3 Gt e ST

We may choose r_<(r_) arbitrarily, determine P{rLs T2 from the
results of Problem 2 and then £ind Pir 4T} from Eq.<108). In
this way we construct a solution of the Field equations,

Two choices GF_PE(rmﬁ give particularly simple results. If we
choose ro = constant, then £ = 0 and the metric is the Schwaprz-
schild metric given by either of the equivalent torms, Eq.(14) or

(?82. The other choice that gives a simple result is

c
Pﬁirm} = rmfam (10%a)

where 4. 15 a constant. Then, from Problem 3

Prm T = roalT)/a, (10%9b)
where

alT) = a /2k (1 - cosfdk) (10%¢?

T = Tg = an/2K (N ~ sinMdk) (107d)

£q.C108) gives

T = pery = ___ 9% (118>

ZT¢ ,ﬂ‘:.g"*r,a‘ gor  MEXT PAhHLr

Pir

m?
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EQ.i{?8) gives the metric

= ; 74
ds?Z = gr2 - _32(0) [___drg + r_2anZ | {1 51ay

z I - kr 273 2 .
oL m

A change of coordinates from rem to % by

r o= _3pSinXdK_ | C111b)
i3 K

puts the metric in the form

C w2 2
SINSxlk dii<-
ds< = dTE - azifﬁfdxz + = } O 3

K

which we recognize to be the same as Eq.(72), the metric for Freed-
mann’s cosmological models,

A convenient wary of constructing some models of inhomogenous
universes is by joining together Schwarzschild solutions with £ = 0
and Friedmann solutions with # = P(T). The continuity condi-
tions that must be imposed on P{rm,fj at the value o+ rm 2t which
the solutions are joined may be obtained by Inspection of the field

2quations. It fs clear that rir .t must be a continucus function of
Frme Tor otherwise r’ would have a delta function at the point of
discontinuity and this would jnvalidats Eq.{(108). On the other hand,

at the value of r at which the solutions are joined, £ and T

have jump discontinuities, so according to EqQ.(108) r’ may have a
Jump discontinuity also. Inspection of the field equations reveals
that r7” does not appear, so there is no delta function that would
inﬁalidate these equations. Although W** = 2r““/pr -2r“2/r2 does
appear in Eq.(100c) it is cancelled by the W'’ in »3'W' /2 = W’ +
©‘2/2 - wf//f, It follows that the boundary condition at the value



1/~ #5

ot Co where Schwarzschild and Friedmann solutions Jjoin is that

[

Pirn,T> be- continuous.
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It is useful to make another change of coordinates from

CTyPm s @,9) to (M 6,92, Using the results of Problem 3, we define

Tlrp, M = Alr 2N, ror ™ =~ g(M (112a)
where
By
her > = (__m_»!72 ¢112b)
: e
1 sinMdK
geMm = o (1 - i (112¢)
2K JK
| | 1
G¢M = _ 1 — cosfdk) (112d)
2K
We detine
_ dr
dx = m TR

= 1/2
hel = Kr_/r >

In these coordinates the metric takes the farm

dinh din
ds2 = nicx:gzcﬂ}{; dx + ®  gn32

ax dm
LoED d1EE_ = = d1lnh ding ]E
Eaﬁ L drm dM
" an2
_FEQE__ j} (1143



Itk 2 m Feifg? is given by Eg.(t0%ad, hfhmh = 8q = constant, Eq.(113)
can be integrated to obtain
Sinwak
"m T Ay TR (o

and Eq.C114> néduceé to Eq.fEE} thé, metric for the Friedmann cos-

mological models., When g = constant, Eq.(113) can be integrated
to obtain

ke,
sine{yx = Ry K2

r =

& (116)

In this case Eg.(l14) For the metric has =z rather complicated form,

but we Know that it is equivalent to the Schwarzschild metric,



fh=3

ke shall use these new coordinates to construct a model of =
black hole embedded in a closed universe., We divide the range of
% into three regions-— a Friedmann region with 0 ¢ % ¢ %,
2 Schwarzschild region with Xy ¢ % § ®p, and another Fried-
mann region with x5 & x ¢ Xg,; where x5 is the value of x
2t which the universe closes, In these regions ro is given by

(rdex>/az 0 5 S S
: m o : : 1
F_(¥) = ~ — E{K 2 = E ¥
s = "5l T Tmi oA TOEONSE. X 0w ¢ %o (117>
3 # & E .
pmih}fbm KE ¢ %X ¢ xg
According to Eqs.{115) and ¢(11&), Fm IS given by
Ansinx 0 & x £
r

=1



7 PO o & < K= e, =53

|
| 1
i e R XX § %o (118

~ i= -
" | 2InS(x - ¥ )2
i
|
bmiin{x - w4 Xn & X W

The constants ', ¥'7 and qﬂ are to be chosen so that ﬁiﬁxh and
Pn X2 are continuous at ®y &nd ¥o. When this is done, we find

ff%ﬂiinx ' S ' : 0 ¢ w ¢ Ky

A WK
mis Ty e
sinzqzxi - %)/

II
PptX) = ﬁ
J
f -
f Sind(3xy - %y)/2

In order to have P = 0 when x = ®g, indicating closure of the uni-

verse, we must hawve

g = T 4+ 3(xs = % )/2 1200

In Fig.S5a we have sketched the world lines of the particles
of this universe in (M,%) coordinates. They are wvertical lines since
#ach particle carries its ¥ coordinate with it. The world lines
begin at M = 0, the time of the big bang, and terminate af N = 27.
We have used dotted lines in the Schwarzschild region to indicate
that these are fictitious particles that carry coordinates but con-
tribute nothing to the mass. In Fig.5b we have sKetched Pedx), The

coordinates r and T are given in terms of 7 and rn{x) by the results
of Problem 3. These have been used to sketch the world limes in

(TyrJ) coordinates in Fig.é
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lbe Have taken Tﬂ = 0 in Problem 2 so0 all of the world lines
in Fig.s originate at r = 0, T = 0. The matter in the Friedmann

reqgion 0 ¢ % ¢ %, collapses at the time T ﬁam. The remainder of
the matter in the universe it in the second Friedmann reqion and

collapses at the Tater *ime T = bmq To an observer in the secand
Friedmann region or the Schwarzschild region, the collapse of the

matter in the first Frisdmann region would appear as 3 collapse of
a part of the Universe to a black hole while the rect 2+ the uni-

verse continues its expansion and collapse a2t the big crunch.

J =54
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