Ionospheric Propagation Mechanisms Revealed with Pactor and OTH Radar

Edwin C. Jones, MD, PhD (AE4TM) VA Loma Linda Healthcare System

ARRL SW Division Convention Torrance, California 8-Sep-2007

Collaborators

Harold C. Diezel (W7KP) Telecommunications Engineer, Fallon, NV 89406

Raymond A. Greenwald, PhD Director of SuperDARN OTHR Program Applied Physics Laboratory The Johns Hopkins University, Laurel, MD 20723

Hans-Peter Helfert (DL6MAA) Special Communications Systems GmbH & Co. KG Roentgenstr 36, 63454 Hanau, Germany

> Murray K. Woodfield (ZL1CN) Wellsford, Auckland 1242 182 Ingleton Road New Zealand

Mode Requirements

- 1) High sensitivity (Pactor has -18 dB S/N sensitivity inaudible)
- 2) Provide accurate time delay readings (Pactor accuracy is 0.625mS)
- 3) Provide accurate relative Doppler shifts (Pactor accuracy is 35mHz)

HF Station Requirements

- 1) Consistent readings from HF transceivers (ICOM-746 and Rohde-Schwarz XK-2100)
- 2) Highest gain with minimum directivity
- 3) Base stations utilized Zepp antennas
- 4) Mobile stations utilized all-bander SG-303 verticals with SG-231 autotuners

Establishing a Pactor Contact

- 1) Master station ae4tm-1 sends a connect request to a monitoring slave station, e.g. C ae4tm-2.
- 2) If heard by slave station ae4tm-2, an "ack" is returned.
- 3) The Pactor controllers begin error free CRC handshaking.
- 4) The propagation time delay is recorded for error corrections (this data is available for propagation time calculations).
- 5) The relative frequency difference is updated with each packet burst for the error correction (this data is available for experiments).

Calculating Propagation Distance

- Must subtract time delay from the station electronics: typical delays ~ 55mS.
- Delay (mS) = $21mS + CSD(mS) + IRD_m + IRD_s$
- Typical IRD = 3.0mS (SSB IF) 4.5mS (CW IF)
- D (miles) = 186 mi/mS X t (mS) / 2 (full distance)
- D (miles) = 186 mi/mS X t (mS) / 4 (radar mode)
- V _{Doppler} = $(c / 2) X (\Delta f / f)$

Propagation Times

Collaboration with SuperDARN

Photo by Bill Bristow

Kapuskasing SuperDARN Station

Ideal Ionogram

Interpreting lonograms

 $N_{max} = 1.24 \times 10^{10} (f_0^{2+} f_0 f_{\omega}) \text{ m}^{-3}$, where N_{max} is the peak electron density per m⁻³, f_0 is the frequency in MHz, and f_{ω} is the plasma frequency (~ 10⁶ s⁻¹ – 10⁷ s⁻¹).

Note: +_ represents the ordinary and extraordinary modes.

f_oF2 Maps

Frequency Dependence of HF Blind Zone

Blind Zone (mi) ~ 730 LN [f / foF2] +78

HF Backscatter ("long skip")

Backscatter Range vs Wavelength

 $N_{max} \sim 1.24 \times 10^{10} (f_o^2) \text{ m}^{-3}$

Direction to Backscatter Source

Auroral Oval and Backscatter

Source of Backscatter Ion Clouds

Animation: http://ecjones.org/_backscat/Nov17_2003_bksct.gif

Auroral Images (Fairbanks AK)

Seasonal Pattern for Backscatter

Backscatter with SuperDARN

Backscatter and TID's (Travelling Ionospheric Disturbances)

Atmospheric Gravity Waves (AGW)

HF Doppler Study

HF Doppler Fluctuations

Doppler Shifts in Oblique Links

Determining the 0 Hz Doppler Shift

Determining the TID Velocity

Doppler Shifts on 80m

Calculated Vertical Velocities on 80m

Integrated Reflection Altitudes on 80m

Doppler Shift Variation over a 12 Day Period (April 14-26, 2004)

Integrated RF Paths over a 12 Day Period (April 14-26, 2004)

Ionosphere Refraction Distance (April 14-26, 2004)

HF Ionospheric Refraction

Doppler Shift Variation over a 12 Day Period (October 19-31, 2006)

Solar Wind Effect on HF Doppler Shifts

Introducing Radiation Detectors to Study

- PM1621A: GM Tube, 10 KeV 20.0 MeV, and 10s response time
- PM1703MA: CsI(TI), 33 KeV 3.0 MeV, and 0.25s response time

Effect of Elevation on Background Radiation (10keV-20MeV)

Effect of Altitude on Background Radiation (Lat 35°)

Solar Wind Interaction with the Ionosphere

At 400km/s, travel distance ~50 km or ~30 mi

Moreton Wave 5-Jul-2006 (X6.5)

Source & Animation:

http://www.heliotown.com/Radio_Sun_Introduction.html

Long Duration C6.6/1F X-Ray Flare

dd.mm.yy / hh:mm:ss

HF Effect from X-Ray Flare

Summary

- First joint study between amateur radio and SuperDARN OTHR program.
- Doppler fluctuations reveal movements of TID's as well as the rise/collapse of the ionosphere during the day.
- Background radiation measurements suggest that the solar wind is impacting the atmosphere ~50km (~30mi) after initially impacting the F-layer.